This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

Overview

candle-simulator

arXiv AAAI Get the dataset GitHub

This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset.

The rendered version of the dataset is provided at the IITH-CANDLE repository.

Environment Setup

Download and install Blender. Make sure that it's accessible from the command line.

Note: Tests and rendering were performed on version 2.90. Unless future versions include breaking changes, functionality should be largely unaffected. We will be happy to receive a PR / issue if any incompatibilities arise.

Running the script

The main script candle_simulator.py runs in an instance of blender invoked by the command:

# starts blender in the background, without audio and runs the python script
$ blender -b -noaudio -P candle_simulator.py

Sample images from IITH-CANDLE

IITH-CANDLE grid The rendered version of the dataset is provided at the IITH-CANDLE repository.

Extending IITH-CANDLE

Each factor of variation can be independently modified or extended by simply editing or adding .blend files under ./data/ consisting of just that factor. The script then combines them independently while generating the dataset.

Steps to extend

  1. Add in or modify a factor, say we add ./objects/monkey.blend. Ensure that the filename and the property name of the factor in Blender match.
  2. Update properties: object_type to include monkey.
  3. Rendering a version now will augment IITH-CANDLE with all variants of monkey.

Conventions followed

Factor Conventions
objects We recommend the objects fit in a 1x1x1m space at the origin. This helps with uniform translation and scaling. Also update properties: object_type.
scenes They are node-based world textures pointing to a HDRI image. We recommend just copying an existing one over and modifying the image to point to the required one. Also update scenes and bounds in the script with the XY coordinates where objects are allowed to be placed.
size Just modify properties: size in the script. The objects will be scaled at runtime.
rotation Just modify properties: rotation in the script. The objects will be rotated at runtime.
lights To modify the type of light, edit lights.blend. If only the positions have to be changed, just edit lights and light_position correspondingly.
color (materials) Vanilla Blender materials. Just modify properties: color as well.

How to cite our work

If you use IITH-CANDLE, please consider citing:

@article{candle, 
title={On Causally Disentangled Representations},  
journal={Proceedings of the AAAI Conference on Artificial Intelligence}, 
author={Abbavaram Gowtham Reddy, Benin Godfrey L, and Vineeth N Balasubramanian}, 
year={2022},
month={February}
}

License

This work is licensed under the MIT License and the dataset itself is licensed under the Creative Commons Attribution 4.0 International License.

An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022