📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

Overview

tensorlm

Generate Shakespeare poems with 4 lines of code.

showcase of the package

Installation

tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+

pip3 install tensorlm

Basic Usage

Use the CharLM or WordLM class:

import tensorflow as tf
from tensorlm import CharLM
    
with tf.Session() as session:
    
    # Create a new model. You can also use WordLM
    model = CharLM(session, "datasets/sherlock/tinytrain.txt", max_vocab_size=96,
                   neurons_per_layer=100, num_layers=3, num_timesteps=15)
    
    # Train it 
    model.train(session, max_epochs=10, max_steps=500)
    
    # Let it generate a text
    generated = model.sample(session, "The ", num_steps=100)
    print("The " + generated)

This should output something like:

The  ee e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 

Command Line Usage

Train: python3 -m tensorlm.cli --train=True --level=char --train_text_path=datasets/sherlock/tinytrain.txt --max_vocab_size=96 --neurons_per_layer=100 --num_layers=2 --batch_size=10 --num_timesteps=15 --save_dir=out/model --max_epochs=300 --save_interval_hours=0.5

Sample: python3 -m tensorlm.cli --sample=True --level=char --neurons_per_layer=400 --num_layers=3 --num_timesteps=160 --save_dir=out/model

Evaluate: python3 -m tensorlm.cli --evaluate=True --level=char --evaluate_text_path=datasets/sherlock/tinyvalid.txt --neurons_per_layer=400 --num_layers=3 --batch_size=10 --num_timesteps=160 --save_dir=out/model

See python3 -m tensorlm.cli --help for all options.

Advanced Usage

Custom Input Data

The inputs and targets don't have to be text. GeneratingLSTM only expects token ids, so you can use any data type for the sequences, as long as you can encode the data to integer ids.

# We use integer ids from 0 to 19, so the vocab size is 20. The range of ids must always start
# at zero.
batch_inputs = np.array([[1, 2, 3, 4], [15, 16, 17, 18]])  # 2 batches, 4 time steps each
batch_targets = np.array([[2, 3, 4, 5], [16, 17, 18, 19]])

# Create the model in a TensorFlow graph
model = GeneratingLSTM(vocab_size=20, neurons_per_layer=10, num_layers=2, max_batch_size=2)

# Initialize all defined TF Variables
session.run(tf.global_variables_initializer())

for _ in range(5000):
    model.train_step(session, batch_inputs, batch_targets)

sampled = model.sample_ids(session, [15], num_steps=3)
print("Sampled: " + str(sampled))

This should output something like:

Sampled: [16, 18, 19]

Custom Training, Dropout etc.

Use the GeneratingLSTM class directly. This class is agnostic to the dataset type. It expects integer ids and returns integer ids.

import tensorflow as tf
from tensorlm import Vocabulary, Dataset, GeneratingLSTM

BATCH_SIZE = 20
NUM_TIMESTEPS = 15

with tf.Session() as session:
    # Generate a token -> id vocabulary based on the text
    vocab = Vocabulary.create_from_text("datasets/sherlock/tinytrain.txt", max_vocab_size=96,
                                        level="char")

    # Obtain input and target batches from the text file
    dataset = Dataset("datasets/sherlock/tinytrain.txt", vocab, BATCH_SIZE, NUM_TIMESTEPS)

    # Create the model in a TensorFlow graph
    model = GeneratingLSTM(vocab_size=vocab.get_size(), neurons_per_layer=100, num_layers=2,
                           max_batch_size=BATCH_SIZE, output_keep_prob=0.5)

    # Initialize all defined TF Variables
    session.run(tf.global_variables_initializer())

    # Do the training
    epoch = 1
    step = 1
    for epoch in range(20):
        for inputs, targets in dataset:
            loss = model.train_step(session, inputs, targets)

            if step % 100 == 0:
                # Evaluate from time to time
                dev_dataset = Dataset("datasets/sherlock/tinyvalid.txt", vocab,
                                      batch_size=BATCH_SIZE, num_timesteps=NUM_TIMESTEPS)
                dev_loss = model.evaluate(session, dev_dataset)
                print("Epoch: %d, Step: %d, Train Loss: %f, Dev Loss: %f" % (
                    epoch, step, loss, dev_loss))

                # Sample from the model from time to time
                print("Sampled: \"The " + model.sample_text(session, vocab, "The ") + "\"")

            step += 1

This should output something like:

Epoch: 3, Step: 100, Train Loss: 3.824941, Dev Loss: 3.778008
Sampled: "The                                                                                                     "
Epoch: 7, Step: 200, Train Loss: 2.832825, Dev Loss: 2.896187
Sampled: "The                                                                                                     "
Epoch: 11, Step: 300, Train Loss: 2.778579, Dev Loss: 2.830176
Sampled: "The         eee                                                                                         "
Epoch: 15, Step: 400, Train Loss: 2.655153, Dev Loss: 2.684828
Sampled: "The        ee    e  e   e  e  e  e  e  e  e   e  e  e   e  e  e   e  e  e   e  e  e   e  e  e   e  e  e "
Epoch: 19, Step: 500, Train Loss: 2.444502, Dev Loss: 2.479753
Sampled: "The    an  an  an  on  on  on  on  on  on  on  on  on  on  on  on  on  on  on  on  on  on  on  on  on  o"
You might also like...
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Deep learning library featuring a higher-level API for TensorFlow.
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

Deep learning library featuring a higher-level API for TensorFlow.
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Comments
  • Bump numpy from 1.13.1 to 1.21.0

    Bump numpy from 1.13.1 to 1.21.0

    Bumps numpy from 1.13.1 to 1.21.0.

    Release notes

    Sourced from numpy's releases.

    v1.21.0

    NumPy 1.21.0 Release Notes

    The NumPy 1.21.0 release highlights are

    • continued SIMD work covering more functions and platforms,
    • initial work on the new dtype infrastructure and casting,
    • universal2 wheels for Python 3.8 and Python 3.9 on Mac,
    • improved documentation,
    • improved annotations,
    • new PCG64DXSM bitgenerator for random numbers.

    In addition there are the usual large number of bug fixes and other improvements.

    The Python versions supported for this release are 3.7-3.9. Official support for Python 3.10 will be added when it is released.

    :warning: Warning: there are unresolved problems compiling NumPy 1.21.0 with gcc-11.1 .

    • Optimization level -O3 results in many wrong warnings when running the tests.
    • On some hardware NumPy will hang in an infinite loop.

    New functions

    Add PCG64DXSM BitGenerator

    Uses of the PCG64 BitGenerator in a massively-parallel context have been shown to have statistical weaknesses that were not apparent at the first release in numpy 1.17. Most users will never observe this weakness and are safe to continue to use PCG64. We have introduced a new PCG64DXSM BitGenerator that will eventually become the new default BitGenerator implementation used by default_rng in future releases. PCG64DXSM solves the statistical weakness while preserving the performance and the features of PCG64.

    See upgrading-pcg64 for more details.

    (gh-18906)

    Expired deprecations

    • The shape argument numpy.unravel_index cannot be passed as dims keyword argument anymore. (Was deprecated in NumPy 1.16.)

    ... (truncated)

    Commits
    • b235f9e Merge pull request #19283 from charris/prepare-1.21.0-release
    • 34aebc2 MAINT: Update 1.21.0-notes.rst
    • 493b64b MAINT: Update 1.21.0-changelog.rst
    • 07d7e72 MAINT: Remove accidentally created directory.
    • 032fca5 Merge pull request #19280 from charris/backport-19277
    • 7d25b81 BUG: Fix refcount leak in ResultType
    • fa5754e BUG: Add missing DECREF in new path
    • 61127bb Merge pull request #19268 from charris/backport-19264
    • 143d45f Merge pull request #19269 from charris/backport-19228
    • d80e473 BUG: Removed typing for == and != in dtypes
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Bump numpy from 1.13.1 to 1.22.0

    Bump numpy from 1.13.1 to 1.22.0

    Bumps numpy from 1.13.1 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Bump nltk from 3.2.4 to 3.4.5

    Bump nltk from 3.2.4 to 3.4.5

    Bumps nltk from 3.2.4 to 3.4.5.

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v0.4.2)
Owner
Kilian Batzner
Kilian Batzner
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
source code of Adversarial Feedback Loop Paper

Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi

17 Jul 20, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021