Discovering Interpretable GAN Controls [NeurIPS 2020]

Overview

GANSpace: Discovering Interpretable GAN Controls

Python 3.7 PyTorch 1.3 Open In Colab teaser

Figure 1: Sequences of image edits performed using control discovered with our method, applied to three different GANs. The white insets specify the particular edits using notation explained in Section 3.4 ('Layer-wise Edits').

GANSpace: Discovering Interpretable GAN Controls
Erik Härkönen1,2, Aaron Hertzmann2, Jaakko Lehtinen1,3, Sylvain Paris2
1Aalto University, 2Adobe Research, 3NVIDIA
https://arxiv.org/abs/2004.02546

Abstract: This paper describes a simple technique to analyze Generative Adversarial Networks (GANs) and create interpretable controls for image synthesis, such as change of viewpoint, aging, lighting, and time of day. We identify important latent directions based on Principal Components Analysis (PCA) applied in activation space. Then, we show that interpretable edits can be defined based on layer-wise application of these edit directions. Moreover, we show that BigGAN can be controlled with layer-wise inputs in a StyleGAN-like manner. A user may identify a large number of interpretable controls with these mechanisms. We demonstrate results on GANs from various datasets.

Video: https://youtu.be/jdTICDa_eAI

Setup

See the setup instructions.

Usage

This repository includes versions of BigGAN, StyleGAN, and StyleGAN2 modified to support per-layer latent vectors.

Interactive model exploration

# Explore BigGAN-deep husky
python interactive.py --model=BigGAN-512 --class=husky --layer=generator.gen_z -n=1_000_000

# Explore StyleGAN2 ffhq in W space
python interactive.py --model=StyleGAN2 --class=ffhq --layer=style --use_w -n=1_000_000 -b=10_000

# Explore StyleGAN2 cars in Z space
python interactive.py --model=StyleGAN2 --class=car --layer=style -n=1_000_000 -b=10_000
# Apply previously saved edits interactively
python interactive.py --model=StyleGAN2 --class=ffhq --layer=style --use_w --inputs=out/directions

Visualize principal components

# Visualize StyleGAN2 ffhq W principal components
python visualize.py --model=StyleGAN2 --class=ffhq --use_w --layer=style -b=10_000

# Create videos of StyleGAN wikiart components (saved to ./out)
python visualize.py --model=StyleGAN --class=wikiart --use_w --layer=g_mapping -b=10_000 --batch --video

Options

Command line paramaters:
  --model      one of [ProGAN, BigGAN-512, BigGAN-256, BigGAN-128, StyleGAN, StyleGAN2]
  --class      class name; leave empty to list options
  --layer      layer at which to perform PCA; leave empty to list options
  --use_w      treat W as the main latent space (StyleGAN / StyleGAN2)
  --inputs     load previously exported edits from directory
  --sigma      number of stdevs to use in visualize.py
  -n           number of PCA samples
  -b           override automatic minibatch size detection
  -c           number of components to keep

Reproducibility

All figures presented in the main paper can be recreated using the included Jupyter notebooks:

  • Figure 1: figure_teaser.ipynb
  • Figure 2: figure_pca_illustration.ipynb
  • Figure 3: figure_pca_cleanup.ipynb
  • Figure 4: figure_style_content_sep.ipynb
  • Figure 5: figure_supervised_comp.ipynb
  • Figure 6: figure_biggan_style_resampling.ipynb
  • Figure 7: figure_edit_zoo.ipynb

Known issues

  • The interactive viewer sometimes freezes on startup on Ubuntu 18.04. The freeze is resolved by clicking on the terminal window and pressing the control key. Any insight into the issue would be greatly appreciated!

Integrating a new model

  1. Create a wrapper for the model in models/wrappers.py using the BaseModel interface.
  2. Add the model to get_model() in models/wrappers.py.

Importing StyleGAN checkpoints from TensorFlow

It is possible to import trained StyleGAN and StyleGAN2 weights from TensorFlow into GANSpace.

StyleGAN

  1. Install TensorFlow: conda install tensorflow-gpu=1.*.
  2. Modify methods __init__(), load_model() in models/wrappers.py under class StyleGAN.

StyleGAN2

  1. Follow the instructions in models/stylegan2/stylegan2-pytorch/README.md. Make sure to use the fork in this specific folder when converting the weights for compatibility reasons.
  2. Save the converted checkpoint as checkpoints/stylegan2/<dataset>_<resolution>.pt.
  3. Modify methods __init__(), download_checkpoint() in models/wrappers.py under class StyleGAN2.

Acknowledgements

We would like to thank:

  • The authors of the PyTorch implementations of BigGAN, StyleGAN, and StyleGAN2:
    Thomas Wolf, Piotr Bialecki, Thomas Viehmann, and Kim Seonghyeon.
  • Joel Simon from ArtBreeder for providing us with the landscape model for StyleGAN.
    (unfortunately we cannot distribute this model)
  • David Bau and colleagues for the excellent GAN Dissection project.
  • Justin Pinkney for the Awesome Pretrained StyleGAN collection.
  • Tuomas Kynkäänniemi for giving us a helping hand with the experiments.
  • The Aalto Science-IT project for providing computational resources for this project.

Citation

@inproceedings{härkönen2020ganspace,
  title     = {GANSpace: Discovering Interpretable GAN Controls},
  author    = {Erik Härkönen and Aaron Hertzmann and Jaakko Lehtinen and Sylvain Paris},
  booktitle = {Proc. NeurIPS},
  year      = {2020}
}

License

The code of this repository is released under the Apache 2.0 license.
The directory netdissect is a derivative of the GAN Dissection project, and is provided under the MIT license.
The directories models/biggan and models/stylegan2 are provided under the MIT license.

Owner
Erik Härkönen
PhD student at Aalto University
Erik Härkönen
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022