Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Related tags

Deep LearningHGNet
Overview

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Results

We apply three KGQA benchmarks to evaluate our approach, ComplexWebQuestions (Talmor and Berant, 2018), LC-QuAD (Trivedi et al., 2017), and WebQSP (Yih et al., 2016).

Dataset Structure Acc. Query Graph Acc. Precision Recall F1-score [email protected]
ComplexWebQuestions 66.96 51.68 65.27 68.44 64.95 65.25
LC-QuAD 78.00 60.90 75.82 75.22 75.10 76.00
WebQSP 79.91 62.63 70.22 74.38 70.61 70.37

Requirements

  • Python == 3.7.0
  • cudatoolkit == 10.1.243
  • cudnn == 7.6.5
  • six == 1.15.0
  • torch == 1.4.0
  • transformers == 4.9.2
  • numpy == 1.19.2
  • SPARQLWrapper == 1.8.5
  • rouge_score == 0.0.4
  • filelock == 3.0.12
  • nltk == 3.6.2
  • absl == 0.0
  • dataclasses == 0.6
  • datasets == 1.9.0
  • jsonlines == 2.0.0
  • python_Levenshtein == 0.12.2
  • Virtuoso SPARQL query service

Data

  • Download and unzip our preprocessed data to ./, you can also running our scripts under ./preprocess to obtain them again.

  • Download our used Freebase and DBpedia. Both of them only contain English triples by removing other languages. Download and install Virtuoso to conduct the SPARQL query service for the downloaded Freebase and DBpedia. Here is a tutorial on how to install Virtuoso and import the knowledge graph into it.

  • Download GloVe Embedding glove.42B.300d.txt and put it to your_glove_path.

  • Download our vocabulary from here. Unzip and put it under ./. It contains our used SPARQL cache for Execution-Guided strategy.

Running Code

1. Training for HGNet

Before training, first set the following hyperparameter in train_cwq.sh, train_lcq.sh, and train_wsp.sh.

--glove_path your_glove_path

Execute the following command for training model on ComplexWebQuestions.

sh train_cwq.sh

Execute the following command for training model on LC-QuAD.

sh train_lcq.sh

Execute the following command for training model on WebQSP.

sh train_wsp.sh

The trained model file is saved under ./runs directory.
The path format of the trained model is ./runs/RUN_ID/checkpoints/best_snapshot_epoch_xx_best_val_acc_xx_model.pt.

2. Testing for HGNet

Before testing, need to train a model first and set the following hyperparameters in eval_cwq.sh, eval_lcq.sh, and eval_wsp.sh.

--cpt your_trained_model_path
--kb_endpoint your_sparql_service_ip

You can also directly download our trained models from here. Unzip and put it under ./.

Execute the following command for testing the model on ComplexWebQuestions.

sh eval_cwq.sh

Execute the following command for testing the model on LC-QuAD.

sh eval_lcq.sh

Execute the following command for testing the model on WebQSP.

sh eval_wsp.sh
Owner
Yongrui Chen
Yongrui Chen
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022