Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

Overview

DeepMTA_PyTorch

Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Chen, Jin Tang, Bin Luo, Yaowei Wang, Yonghong Tian, Feng Wu, IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT 2021) [Paper] [Project]

Abstract:

Most of the existing single object trackers track the target in a unitary local search window, making them particularly vulnerable to challenging factors such as heavy occlusions and out-of-view movements. Despite the attempts to further incorporate global search, prevailing mechanisms that cooperate local and global search are relatively static, thus are still sub-optimal for improving tracking performance. By further studying the local and global search results, we raise a question: can we allow more dynamics for cooperating both results? In this paper, we propose to introduce more dynamics by devising a dynamic attention-guided multi-trajectory tracking strategy. In particular, we construct dynamic appearance model that contains multiple target templates, each of which provides its own attention for locating the target in the new frame. Guided by different attention, we maintain diversified tracking results for the target to build multi-trajectory tracking history, allowing more candidates to represent the true target trajectory. After spanning the whole sequence, we introduce a multi-trajectory selection network to find the best trajectory that deliver improved tracking performance. Extensive experimental results show that our proposed tracking strategy achieves compelling performance on various large-scale tracking benchmarks.

Our Proposed Approach:

fig-1

Install:

git clone https://github.com/wangxiao5791509/DeepMTA_PyTorch
cd DeepMTA_TCSVT_project

# create the conda environment
conda env create -f environment.yml
conda activate deepmta

# build the vot toolkits
bash benchmark/make_toolkits.sh

Download Dataset and Model:

download pre-trained Traj-Evaluation-Network [Onedrive] and Dynamic-TANet-Model [Onedrive]

get the dataset OTB2015, GOT-10k, LaSOT, UAV123, UAV20L, OxUvA from [List].

Download TNL2K dataset (published on CVPR 2021, 1300/700 for train and test subset) from: https://sites.google.com/view/langtrackbenchmark/

Train:

  1. you can directly use the pre-trained tracking model of THOR [github];

  2. train Dynamic Target-aware Attention:

cd ~/DeepMTA_TCSVT_project/trackers/dcynet_modules_adaptis/ 
python train.py
  1. train Trajectory Evaluation Network:
python train_traj_measure_net.py

Tracking:

take got-10k and LaSOT dataset as the examples:

python testing.py -d GOT10k -t SiamRPN --lb_type ensemble

python testing.py -d LaSOT -t SiamRPN --lb_type ensemble

Benchmark Results:

Experimental results on the compared tracking benchmarks

[OTB2015] [LaSOT] [OxUvA] [GOT-10k] [UAV123] [TNL2K]

Tracking Results:

Tracking results on LaSOT dataset.

fig-1

Tracking results on TNL2K dataset.

fig-1

Attention prediciton and Tracking Results.

fig-1 fig-1

Acknowledgement:

Our tracker is developed based on THOR which is published on BMVC-2019 [Paper] [Code]

Other related works:

  • MTP: Multi-hypothesis Tracking and Prediction for Reduced Error Propagation, Xinshuo Weng, Boris Ivanovic, and Marco Pavone [Paper] [Code]
  • D.-Y. Lee, J.-Y. Sim, and C.-S. Kim, “Multihypothesis trajectory analysis for robust visual tracking,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5088–5096. [Paper]
  • C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking revisited,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4696–4704. [Paper]

Citation:

If you find this paper useful for your research, please consider to cite our paper:

@inproceedings{wang2021deepmta,
 title={Dynamic Attention guided Multi-Trajectory Analysis for Single Object Tracking},
 author={Xiao, Wang and Zhe, Chen and Jin, Tang and Bin, Luo and Yaowei, Wang and Yonghong, Tian and Feng, Wu},
 booktitle={IEEE Transactions on Circuits and Systems for Video Technology},
 doi={10.1109/TCSVT.2021.3056684}, 
 year={2021}
}

If you have any questions about this work, please contact with me via: [email protected] or [email protected]

Owner
Xiao Wang(王逍)
Postdoc researcher at Peng Cheng Laboratory. My wechat: wangxiao5791509
Xiao Wang(王逍)
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Matthew Colbrook 1 Apr 08, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022