A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

Overview

sam4onnx

A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Specify an arbitrary OP name and Constant type INPUT name or an arbitrary OP name and Attribute name, and pass the modified constants to rewrite the parameters of the relevant OP.
  • Two types of input are accepted: .onnx file input and onnx.ModelProto format objects.
  • To design the operation to be simple, only a single OP can be specified.
  • Attributes and constants are forcibly rewritten, so the integrity of the entire graph is not checked in detail.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sam4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/sam4onnx:latest

### docker build
$ docker build -t pinto0309/sam4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sam4onnx:latest
$ cd /workdir

2. CLI Usage

$ sam4onnx -h

usage:
    sam4onnx [-h]
    --input_onnx_file_path INPUT_ONNX_FILE_PATH
    --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
    [--op_name OP_NAME]
    [--attributes NAME DTYPE VALUE]
    [--input_constants NAME DTYPE VALUE]
    [--non_verbose]

optional arguments:
  -h, --help
        show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  --op_name OP_NAME
        OP name of the attributes to be changed.
        When --attributes is specified, --op_name must always be specified.
        e.g. --op_name aaa

  --attributes NAME DTYPE VALUE
        Parameter to change the attribute of the OP specified in --op_name.
        If the OP specified in --op_name has no attributes,
        it is ignored. attributes can be specified multiple times.
        --attributes name dtype value dtype is one of
        "float32" or "float64" or "int32" or "int64" or "str".
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --attributes alpha float32 [[1.0]]
        --attributes beta float32 [1.0]
        --attributes transA int64 0
        --attributes transB int64 0

  --input_constants NAME DTYPE VALUE
        Specifies the name of the constant to be changed.
        If you want to change only the constant,
        you do not need to specify --op_name and --attributes.
        input_constants can be specified multiple times.
        --input_constants constant_name numpy.dtype value

        e.g.
        --input_constants constant_name1 int64 0
        --input_constants constant_name2 float32 [[1.0,2.0,3.0],[4.0,5.0,6.0]]

  --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from sam4onnx import modify
>>> help(modify)
Help on function modify in module sam4onnx.onnx_attr_const_modify:

modify(
    input_onnx_file_path: Union[str, NoneType] = '',
    output_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    op_name: Union[str, NoneType] = '',
    attributes: Union[dict, NoneType] = None,
    input_constants: Union[dict, NoneType] = None,
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    op_name: Optional[str]
        OP name of the attributes to be changed.
        When --attributes is specified, --op_name must always be specified.
        Default: ''
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    attributes: Optional[dict]
        Specify output attributes for the OP to be generated.
        See below for the attributes that can be specified.

        {"attr_name1": numpy.ndarray, "attr_name2": numpy.ndarray, ...}

        e.g. attributes =
            {
                "alpha": np.asarray(1.0, dtype=np.float32),
                "beta": np.asarray(1.0, dtype=np.float32),
                "transA": np.asarray(0, dtype=np.int64),
                "transB": np.asarray(0, dtype=np.int64)
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    input_constants: Optional[dict]
        Specifies the name of the constant to be changed.
        If you want to change only the constant,
        you do not need to specify --op_name and --attributes.
        {"constant_name1": numpy.ndarray, "constant_name2": numpy.ndarray, ...}

        e.g.
        input_constants =
            {
                "constant_name1": np.asarray(0, dtype=np.int64),
                "constant_name2": np.asarray([[1.0,2.0,3.0],[4.0,5.0,6.0]], dtype=np.float32)
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    modified_graph: onnx.ModelProto
        Mddified onnx ModelProto

4. CLI Execution

$ sam4onnx \
--op_name Transpose_17 \
--input_onnx_file_path input.onnx \
--output_onnx_file_path output.onnx \
--attributes perm int64 [0,1]

5. In-script Execution

from sam4onnx import modify

modified_graph = modify(
    onnx_graph=graph,
    input_constants={"241": np.asarray([1], dtype=np.int64)},
    non_verbose=True,
)

6. Sample

6-1. Transpose - update perm

image

$ sam4onnx \
--op_name Transpose_17 \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--attributes perm int64 [0,1]

image

6-2. Mul - update Constant (170) - From: 2, To: 1

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--input_constants 170 float32 1

image

6-3. Reshape - update Constant (241) - From: [-1], To: [1]

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--input_constants 241 int64 [1]

image

7. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Simple ONNX operation generator. Simple Operation Generator for ONNX.
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

Ranger deep learning optimizer rewrite to use newest components
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Releases(1.0.12)
  • 1.0.12(Jan 2, 2023)

    What's Changed

    • Support for models with custom domains by @PINTO0309 in https://github.com/PINTO0309/sam4onnx/pull/2

    New Contributors

    • @PINTO0309 made their first contribution in https://github.com/PINTO0309/sam4onnx/pull/2

    Full Changelog: https://github.com/PINTO0309/sam4onnx/compare/1.0.11...1.0.12

    Source code(tar.gz)
    Source code(zip)
  • 1.0.11(Sep 8, 2022)

    • Add short form parameter
      $ sam4onnx -h
      
      usage:
          sam4onnx [-h]
          -if INPUT_ONNX_FILE_PATH
          -of OUTPUT_ONNX_FILE_PATH
          [-on OP_NAME]
          [-a NAME DTYPE VALUE]
          [-da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]]
          [-ic NAME DTYPE VALUE]
          [-n]
      
      optional arguments:
        -h, --help
          show this help message and exit
      
        -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
          Input onnx file path.
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
          Output onnx file path.
      
        -on OP_NAME, --op_name OP_NAME
          OP name of the attributes to be changed.
          When --attributes is specified, --op_name must always be specified.
          e.g. --op_name aaa
      
        -a ATTRIBUTES ATTRIBUTES ATTRIBUTES, --attributes ATTRIBUTES ATTRIBUTES ATTRIBUTES
          Parameter to change the attribute of the OP specified in --op_name.
          If the OP specified in --op_name has no attributes,
          it is ignored. attributes can be specified multiple times.
          --attributes name dtype value dtype is one of
          "float32" or "float64" or "int32" or "int64" or "str".
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --attributes alpha float32 [[1.0]]
          --attributes beta float32 [1.0]
          --attributes transA int64 0
          --attributes transB int64 0
      
        -da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...], --delete_attributes DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]
          Parameter to delete the attribute of the OP specified in --op_name.
          If the OP specified in --op_name has no attributes,
          it is ignored. delete_attributes can be specified multiple times.
          --delete_attributes name1 name2 name3
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g. --delete_attributes alpha beta
      
        -ic INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS, --input_constants INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS
          Specifies the name of the constant to be changed.
          If you want to change only the constant,
          you do not need to specify --op_name and --attributes.
          input_constants can be specified multiple times.
          --input_constants constant_name numpy.dtype value
      
          e.g.
          --input_constants constant_name1 int64 0
          --input_constants constant_name2 float32 [[1.0,2.0,3.0],[4.0,5.0,6.0]]
          --input_constants constant_name3 float32 [\'-Infinity\']
      
        -n, --non_verbose
          Do not show all information logs. Only error logs are displayed.
      
    Source code(tar.gz)
    Source code(zip)
  • 1.0.10(Aug 7, 2022)

  • 1.0.9(Jul 17, 2022)

    • Support for constant rewriting when the same constant is shared. Valid only when op_name is specified. Generates a new constant that is different from the shared constant.

    • Reshape_156 onnx::Reshape_391 int64 [1, -1, 85] image

    • Reshape_174 onnx::Reshape_391 int64 [1, -1, 85] image

      sam4onnx \
      --input_onnx_file_path yolov7-tiny_test_sim.onnx \
      --output_onnx_file_path yolov7-tiny_test_sim_mod.onnx \
      --op_name Reshape_156 \
      --input_constants onnx::Reshape_391 int64 [1,14400,85]
      
    • Reshape_156 onnx::Reshape_391 int64 [1, -1, 85] -> Reshape_156 onnx::Reshape_391_mod_3 int64 [1, 14400, 85] image

    • Reshape_174 onnx::Reshape_391 int64 [1, -1, 85] image

    Source code(tar.gz)
    Source code(zip)
  • 1.0.8(Jun 7, 2022)

  • 1.0.7(May 25, 2022)

  • 1.0.6(May 15, 2022)

  • 1.0.5(May 12, 2022)

  • 1.0.4(May 5, 2022)

  • 1.0.3(May 5, 2022)

    • Support for additional attributes
      • Note that the correct attribute set according to the OP's opset is not checked, so any attribute can be added.
      • The figure below shows the addition of the attribute perm to Reshape, which does not originally exist. image
    Source code(tar.gz)
    Source code(zip)
  • 1.0.2(May 3, 2022)

  • 1.0.1(Apr 16, 2022)

  • 1.0.0(Apr 15, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022