Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Overview

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes

Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Kai-En Lin1, Lei Xiao2, Feng Liu2, Guowei Yang1, Ravi Ramamoorthi1

1University of California, San Diego, 2Facebook Reality Labs

Project Page | Paper | Supplementary Materials | Pretrained models | Dataset | Preprocessing script

Requirements

Install required packages

Make sure you have up-to-date NVIDIA drivers supporting CUDA 11.1 (10.2 could work but need to change cudatoolkit package accordingly)

Run

conda env create -f environment.yml
conda activate video_viewsynth

Usage

Rendering

  1. Download our pretrained checkpoint and testing data. Extract the content to [path_to_data_directory]. It contains frames and background folders, as well as poses_bounds.npy.

  2. In configs, setup data path by changing render_video.txt

    root_dir should point to the frames folder mentioned in 1. and bg_dir should point to background folder.

    out_dir can be your desired output folder.

    ckpt_path should be the pretrained checkpoint path.

  3. Run python render_llff_video.py --config [config_file_path]

    e.g. python render_llff_video.py --config ../configs/render_video.txt

  • (Optional) For your own data, please run prepare_data.sh

    sh render.sh [frame_folder] [starting_frame] [ending_frame] [output_folder_name]

    Make sure your data is in this structure before running

    [frame_folder] --- cam00 --- 00000.jpg
                    |         |- 00001.jpg
                    |         ...
                    |- cam01
                    |- cam02
                    ...
                    |- poses_bounds.npy
    

    e.g. sh render.sh ~/deep_3d_data/frames 0 20 qual

Training

Train MPI

  1. Download RealEstate10K dataset and extract the frames. There are scripts in preprocessing folder which can be used to generate the data.

    The order should be download_data.py -> extract_frames.py -> compress_data.py.

    Remember to change the path in compress_data.py.

  2. Change the paths in config file train_realestate10k.txt

  3. Run

    cd train_mpi
    python train.py --config ../configs/train_realestate10k.txt
    

Train Mask

Once MPI is trained, we can use the checkpoint to train 3D mask network.

  1. Download dataset

  2. Change the paths in config file train_mask.txt

  3. Run

    cd train_mask
    python train.py --config ../configs/train_mask.txt
    

Citation

@inproceedings {lin2021deep,
    title = {Deep 3D Mask Volume for View Synthesis of Dynamic Scenes},
    author = {Kai-En Lin and Lei Xiao and Feng Liu and Guowei Yang and Ravi Ramamoorthi},
    booktitle = {ICCV},
    year = {2021},
}
Owner
Ken Lin
Ken Lin
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022