The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

Overview

P2PNet (ICCV2021 Oral Presentation)

This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework.

An brief introduction of P2PNet can be found at 机器之心 (almosthuman).

The codes is tested with PyTorch 1.5.0. It may not run with other versions.

Visualized demos for P2PNet

The network

The overall architecture of the P2PNet. Built upon the VGG16, it firstly introduce an upsampling path to obtain fine-grained feature map. Then it exploits two branches to simultaneously predict a set of point proposals and their confidence scores.

Comparison with state-of-the-art methods

The P2PNet achieved state-of-the-art performance on several challenging datasets with various densities.

Methods Venue SHTechPartA
MAE/MSE
SHTechPartB
MAE/MSE
UCF_CC_50
MAE/MSE
UCF_QNRF
MAE/MSE
CAN CVPR'19 62.3/100.0 7.8/12.2 212.2/243.7 107.0/183.0
Bayesian+ ICCV'19 62.8/101.8 7.7/12.7 229.3/308.2 88.7/154.8
S-DCNet ICCV'19 58.3/95.0 6.7/10.7 204.2/301.3 104.4/176.1
SANet+SPANet ICCV'19 59.4/92.5 6.5/9.9 232.6/311.7 -/-
DUBNet AAAI'20 64.6/106.8 7.7/12.5 243.8/329.3 105.6/180.5
SDANet AAAI'20 63.6/101.8 7.8/10.2 227.6/316.4 -/-
ADSCNet CVPR'20 55.4/97.7 6.4/11.3 198.4/267.3 71.3/132.5
ASNet CVPR'20 57.78/90.13 -/- 174.84/251.63 91.59/159.71
AMRNet ECCV'20 61.59/98.36 7.02/11.00 184.0/265.8 86.6/152.2
AMSNet ECCV'20 56.7/93.4 6.7/10.2 208.4/297.3 101.8/163.2
DM-Count NeurIPS'20 59.7/95.7 7.4/11.8 211.0/291.5 85.6/148.3
Ours - 52.74/85.06 6.25/9.9 172.72/256.18 85.32/154.5

Comparison on the NWPU-Crowd dataset.

Methods MAE[O] MSE[O] MAE[L] MAE[S]
MCNN 232.5 714.6 220.9 1171.9
SANet 190.6 491.4 153.8 716.3
CSRNet 121.3 387.8 112.0 522.7
PCC-Net 112.3 457.0 111.0 777.6
CANNet 110.0 495.3 102.3 718.3
Bayesian+ 105.4 454.2 115.8 750.5
S-DCNet 90.2 370.5 82.9 567.8
DM-Count 88.4 388.6 88.0 498.0
Ours 77.44 362 83.28 553.92

The overall performance for both counting and localization.

nAP$_{\delta}$ SHTechPartA SHTechPartB UCF_CC_50 UCF_QNRF NWPU_Crowd
$\delta=0.05$ 10.9% 23.8% 5.0% 5.9% 12.9%
$\delta=0.25$ 70.3% 84.2% 54.5% 55.4% 71.3%
$\delta=0.50$ 90.1% 94.1% 88.1% 83.2% 89.1%
$\delta={{0.05:0.05:0.50}}$ 64.4% 76.3% 54.3% 53.1% 65.0%

Comparison for the localization performance in terms of F1-Measure on NWPU.

Method F1-Measure Precision Recall
FasterRCNN 0.068 0.958 0.035
TinyFaces 0.567 0.529 0.611
RAZ 0.599 0.666 0.543
Crowd-SDNet 0.637 0.651 0.624
PDRNet 0.653 0.675 0.633
TopoCount 0.692 0.683 0.701
D2CNet 0.700 0.741 0.662
Ours 0.712 0.729 0.695

Installation

  • Clone this repo into a directory named P2PNET_ROOT
  • Organize your datasets as required
  • Install Python dependencies. We use python 3.6.5 and pytorch 1.5.0
pip install -r requirements.txt

Organize the counting dataset

We use a list file to collect all the images and their ground truth annotations in a counting dataset. When your dataset is organized as recommended in the following, the format of this list file is defined as:

train/scene01/img01.jpg train/scene01/img01.txt
train/scene01/img02.jpg train/scene01/img02.txt
...
train/scene02/img01.jpg train/scene02/img01.txt

Dataset structures:

DATA_ROOT/
        |->train/
        |    |->scene01/
        |    |->scene02/
        |    |->...
        |->test/
        |    |->scene01/
        |    |->scene02/
        |    |->...
        |->train.list
        |->test.list

DATA_ROOT is your path containing the counting datasets.

Annotations format

For the annotations of each image, we use a single txt file which contains one annotation per line. Note that indexing for pixel values starts at 0. The expected format of each line is:

x1 y1
x2 y2
...

Training

The network can be trained using the train.py script. For training on SHTechPartA, use

CUDA_VISIBLE_DEVICES=0 python train.py --data_root $DATA_ROOT \
    --dataset_file SHHA \
    --epochs 3500 \
    --lr_drop 3500 \
    --output_dir ./logs \
    --checkpoints_dir ./weights \
    --tensorboard_dir ./logs \
    --lr 0.0001 \
    --lr_backbone 0.00001 \
    --batch_size 8 \
    --eval_freq 1 \
    --gpu_id 0

By default, a periodic evaluation will be conducted on the validation set.

Testing

A trained model (with an MAE of 51.96) on SHTechPartA is available at "./weights", run the following commands to launch a visualization demo:

CUDA_VISIBLE_DEVICES=0 python run_test.py --weight_path ./weights/SHTechA.pth --output_dir ./logs/

Acknowledgements

  • Part of codes are borrowed from the C^3 Framework.
  • We refer to DETR to implement our matching strategy.

Citing P2PNet

If you find P2PNet is useful in your project, please consider citing us:

@inproceedings{song2021rethinking,
  title={Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework},
  author={Song, Qingyu and Wang, Changan and Jiang, Zhengkai and Wang, Yabiao and Tai, Ying and Wang, Chengjie and Li, Jilin and Huang, Feiyue and Wu, Yang},
  journal={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Related works from Tencent Youtu Lab

  • [AAAI2021] To Choose or to Fuse? Scale Selection for Crowd Counting. (paper link & codes)
  • [ICCV2021] Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting. (paper link & codes)
Owner
Tencent YouTu Research
Tencent YouTu Research
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023