RTSeg: Real-time Semantic Segmentation Comparative Study

Overview

Real-time Semantic Segmentation Comparative Study

The repository contains the official TensorFlow code used in our papers:

Description

Semantic segmentation benefits robotics related applications especially autonomous driving. Most of the research on semantic segmentation is only on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the     different design choices for segmentation. In RTSeg, we address this gap by presenting a real-time semantic segmentation benchmarking framework with a decoupled design for feature extraction and decoding methods. The code and the experimental results are presented on the CityScapes dataset for urban scenes.



Models

Encoder Skip U-Net DilationV1 DilationV2
VGG-16 Yes Yes Yes No
ResNet-18 Yes Yes Yes No
MobileNet Yes Yes Yes Yes
ShuffleNet Yes Yes Yes Yes

NOTE: The rest of the pretrained weights for all the implemented models will be released soon. Stay in touch for the updates.

Reported Results

Test Set

Model GFLOPs Class IoU Class iIoU Category IoU Category iIoU
SegNet 286.03 56.1 34.2 79.8 66.4
ENet 3.83 58.3 24.4 80.4 64.0
DeepLab - 70.4 42.6 86.4 67.7
SkipNet-VGG16 - 65.3 41.7 85.7 70.1
ShuffleSeg 2.0 58.3 32.4 80.2 62.2
SkipNet-MobileNet 6.2 61.5 35.2 82.0 63.0

Validation Set

Encoder Decoder Coarse mIoU
MobileNet SkipNet No 61.3
ShuffleNet SkipNet No 55.5
ResNet-18 UNet No 57.9
MobileNet UNet No 61.0
ShuffleNet UNet No 57.0
MobileNet Dilation No 57.8
ShuffleNet Dilation No 53.9
MobileNet SkipNet Yes 62.4
ShuffleNet SkipNet Yes 59.3

** GFLOPs is computed on image resolution 360x640. However, the mIOU(s) are computed on the official image resolution required by CityScapes evaluation script 1024x2048.**

** Regarding Inference time, issue is reported here. We were not able to outperform the reported inference time from ENet architecture it could be due to discrepencies in the optimization we perform. People are welcome to improve on the optimization method we're using.

Usage

  1. Download the weights, processed data, and trained meta graphs from here
  2. Extract pretrained_weights.zip
  3. Extract full_cityscapes_res.zip under data/
  4. Extract unet_resnet18.zip under experiments/

Run

The file named run.sh provide a good example for running different architectures. Have a look at this file.

Examples to the running command in run.sh file:

python3 main.py --load_config=[config_file_name].yaml [train/test] [Trainer Class Name] [Model Class Name]
  • Remove comment from run.sh for running fcn8s_mobilenet on the validation set of cityscapes to get its mIoU. Our framework evaluation will produce results lower than the cityscapes evaluation script by small difference, for the final evaluation we use the cityscapes evaluation script. UNet ResNet18 should have 56% on validation set, but with cityscapes script we got 57.9%. The results on the test set for SkipNet-MobileNet and SkipNet-ShuffleNet are publicly available on the Cityscapes Benchmark.
python3 main.py --load_config=unet_resnet18_test.yaml test Train LinkNET
  • To measure running time, run in inference mode.
python3 main.py --load_config=unet_resnet18_test.yaml inference Train LinkNET
  • To run on different dataset or model, take one of the configuration files such as: config/experiments_config/unet_resnet18_test.yaml and modify it or create another .yaml configuration file depending on your needs.

NOTE: The current code does not contain the optimized code for measuring inference time, the final code will be released soon.

Main Dependencies

Python 3 and above
tensorflow 1.3.0/1.4.0
numpy 1.13.1
tqdm 4.15.0
matplotlib 2.0.2
pillow 4.2.1
PyYAML 3.12

All Dependencies

pip install -r [requirements_gpu.txt] or [requirements.txt]

Citation

If you find RTSeg useful in your research, please consider citing our work:

@ARTICLE{2018arXiv180302758S,
   author = {{Siam}, M. and {Gamal}, M. and {Abdel-Razek}, M. and {Yogamani}, S. and
    {Jagersand}, M.},
    title = "{RTSeg: Real-time Semantic Segmentation Comparative Study}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1803.02758},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2018,
    month = mar,
   adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180302758S},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

If you find ShuffleSeg useful in your research, please consider citing it as well:

@ARTICLE{2018arXiv180303816G,
   author = {{Gamal}, M. and {Siam}, M. and {Abdel-Razek}, M.},
    title = "{ShuffleSeg: Real-time Semantic Segmentation Network}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1803.03816},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2018,
    month = mar,
   adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180303816G},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Related Project

Real-time Motion Segmentation using 2-stream shuffleseg Code

Owner
Mennatullah Siam
PhD Student
Mennatullah Siam
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Ian Covert 130 Jan 01, 2023
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022