Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Overview

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementation)

Teaser

Paper

Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang, and Fang Wen.

Compare

Abstract

Self-training is a competitive approach in domain adaptive segmentation, which trains the network with the pseudo labels on the target domain. However inevitably, the pseudo labels are noisy and the target features are dispersed due to the discrepancy between source and target domains. In this paper, we rely on representative prototypes, the feature centroids of classes, to address the two issues for unsupervised domain adaptation. In particular, we take one step further and exploit the feature distances from prototypes that provide richer information than mere prototypes. Specifically, we use it to estimate the likelihood of pseudo labels to facilitate online correction in the course of training. Meanwhile, we align the prototypical assignments based on relative feature distances for two different views of the same target, producing a more compact target feature space. Moreover, we find that distilling the already learned knowledge to a self-supervised pretrained model further boosts the performance. Our method shows tremendous performance advantage over state-of-the-art methods.

Installation

Install dependencies:

pip install -r requirements.txt

Data Preparation

Download Cityscapes, GTA5 and SYNTHIA-RAND-CITYSCAPES.

Inference Using Pretrained Model

1) GTA5 -> Cityscapes

Download the pretrained model (57.5 mIoU) and save it in ./pretrained/gta2citylabv2_stage3. Then run the command

python test.py --bn_clr --student_init simclr --resume ./pretrained/gta2citylabv2_stage3/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl
2) SYNTHIA -> Cityscapes

Download the pretrained model (55.5 mIoU, 62.0 mIoU for 16, 13 categories respectively) and save it in ./pretrained/syn2citylabv2_stage3. Then run the command

python test.py --bn_clr --student_init simclr --n_class 16 --resume ./pretrained/syn2citylabv2_stage3/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl

Training

To reproduce the performance, you need 4 GPUs with no less than 16G memory.

1) GTA5 -> Cityscapes
  • Stage1. Download warm-up model (43.3 mIoU), and save it in ./pretrained/gta2citylabv2_warmup/.

    • Generate soft pseudo label.
    python generate_pseudo_label.py --name gta2citylabv2_warmup_soft --soft --resume_path ./pretrained/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast 
    • Calculate initial prototypes.
    python calc_prototype.py --resume_path ./pretrained/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl
    • Train stage1.
    python train.py --name gta2citylabv2_stage1Denoise --used_save_pseudo --ema --proto_rectify --moving_prototype --path_soft Pseudo/gta2citylabv2_warmup_soft --resume_path ./pretrained/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --proto_consistW 10 --rce --regular_w 0.1
  • Stage2. This stage needs well-trained model from stage1 as teacher model. You can get it by above command or download the pretrained model stage1 model(53.7 mIoU) and save it in ./pretrained/gta2citylabv2_stage1Denoise/ (path of resume_path). Besides, download the pretrained model simclr model and save it to ./pretrained/simclr/.

    • Generate pseudo label.
    python generate_pseudo_label.py --name gta2citylabv2_stage1Denoise --flip --resume_path ./logs/gta2citylabv2_stage1Denoise/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast
    • Train stage2.
    python train.py --name gta2citylabv2_stage2 --stage stage2 --used_save_pseudo --path_LP Pseudo/gta2citylabv2_stage1Denoise --resume_path ./logs/gta2citylabv2_stage1Denoise/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --no_resume
  • Stage3. This stage needs well-trained model from stage2 as the teacher model. You can get it with the above command or download the pretrained model stage2 model(56.9 mIoU) and save it in ./pretrained/gta2citylabv2_stage2/ (path of resume_path).

    • Generate pseudo label.
    python generate_pseudo_label.py --name gta2citylabv2_stage2 --flip --resume_path ./logs/gta2citylabv2_stage2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --bn_clr --student_init simclr
    • Train stage3.
    python train.py --name gta2citylabv2_stage3 --stage stage3 --used_save_pseudo --path_LP Pseudo/gta2citylabv2_stage2 --resume_path ./logs/gta2citylabv2_stage2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --ema_bn
2) SYNTHIA -> Cityscapes
  • Stage1. Download warmup model(41.4 mIoU), save it in ./pretrained/syn2citylabv2_warmup/.

    • Generate soft pseudo label.
    python generate_pseudo_label.py --name syn2citylabv2_warmup_soft --soft --n_class 16 --resume_path ./pretrained/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast 
    • Calculate initial prototypes.
    python calc_prototype.py --resume_path ./pretrained/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --n_class 16
    • Train stage1.
    python train.py --name syn2citylabv2_stage1Denoise --src_dataset synthia --n_class 16 --src_rootpath src_rootpath --used_save_pseudo --path_soft Pseudo/syn2citylabv2_warmup_soft --ema --proto_rectify --moving_prototype --proto_consistW 10 --resume_path ./pretrained/syn2citylabv2_warmup/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --rce
  • Stage2. This stage needs well-trained model from stage1 as teacher model. You can get it by above command or download released pretrained stage1 model(51.9 mIoU) and save it in ./pretrained/syn2citylabv2_stage1Denoise/ (path of resume_path).

    • Generate pseudo label.
    python generate_pseudo_label.py --name syn2citylabv2_stage1Denoise --flip --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --n_class 16
    • Train stage2.
    python train.py --name syn2citylabv2_stage2 --stage stage2 --src_dataset synthia --n_class 16 --src_rootpath src_rootpath --used_save_pseudo --path_LP Pseudo/syn2citylabv2_stage1Denoise --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --no_resume
  • Stage3. This stage needs well-trained model from stage2 as teacher model. You can get it by above command or download released pretrained stage2 model(54.6 mIoU) and save it in ./pretrained/stn2citylabv2_stage2/ (path of resume_path).

    • Generate pseudo label.
    python generate_pseudo_label.py --name syn2citylabv2_stage2 --flip --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --bn_clr --student_init simclr --n_class 16
    • Train stage3.
    python train.py --name syn2citylabv2_stage3 --stage stage3 --src_dataset synthia --n_class 16 --src_rootpath src_rootpath --used_save_pseudo --path_LP Pseudo/syn2citylabv2_stage2 --resume_path ./logs/syn2citylabv2_stage2/from_synthia_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --ema_bn

Citation

If you like our work and use the code or models for your research, please cite our work as follows.

@article{zhang2021prototypical,
    title={Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation},
    author={Zhang, Pan and Zhang, Bo and Zhang, Ting and Chen, Dong and Wang, Yong and Wen, Fang},
    journal={arXiv preprint arXiv:2101.10979},
    year={2021}
}

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Acknowledgments

This code is heavily borrowed from CAG_UDA.
We also thank Jiayuan Mao for his Synchronized Batch Normalization code.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022