An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

Overview

Deep BCI SW ver. 1.0 is released.

An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

Web site: http://deepbci.korea.ac.kr/

We provide detailed information in each forder and every function.

  1. 'Intelligent_BCI': contains deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition.
  • Domain Adversarial NN for BCI: functions related to domaon adversarial neural networks
  • EEG based Meta RL Classifier: functions related to model-based reinforcement learning
  • GRU based Large Size EEG Classifier: data and functions relaated to gated recurrent unit
  • etc
  1. 'Ambulatory_BCI': contains general brain-computer interface-related functions that enable high-performance intent recognition in ambulatory environment
  • Channel Selection Method based on Relevance Score: functions related to electrode selection method by evaluating electrode's contribution to motor imagery based on relevance score and CNNs
  • Correlation optimized using rotation matrix: functions related to cognitive imagery analysis using correlation feature
  • SSVEP decoding in ambulatory envieonment using CNN: functions related to decoding scalp- and ear-EEG in ambulatory environment
  • etc
  1. 'Cognitive_BCI': contains cognitive state-related function that enable to estimaate the cognitive states from multi-modality and user-custermized BCI
  • multi-threshold graph metrics using a range of critiera: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat
  • EEG_Authentication_Program: identifying individuals based on resting-state EEG
  • Ear_EEG_Drowsiness_Detection: identifying individuals based on resting-state EEG using convolutional neural network
  • etc
  1. 'Zero-Training_BCI': contains zero-training brain-computer interface-related functions that enable to minimize additional training
  • ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event Related Potential (ERP) analysis including feature extraction, classification, and visualization
  • SSVEP_based_Mind_Mole_Catching: functions allowing users to play mole cathcing game using their brain activity on single/two-player mode
  • SSVEP_based_BCI_speller: functions related to SSVEP-based speller containing nine classes
  • etc

Acknowledgement: This project was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (No. 2017-0-00451, Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

You might also like...
 Source code for our paper
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

A repository that finds a person who looks like you by using face recognition technology.
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Comments
Releases(Deep-BCI)
  • Deep-BCI(Dec 21, 2022)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function. The following items were updated in Deep BCI SW ver. 3.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning
1.2 CNN_Based_Motor_Imagery_Intention_Classifier 1.2 EEG_Decoder_for_PE 1.3 Inter_Subject_Contrastive_Learning_for_EEG 1.4 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI & Intuitive_BCI 2.1 Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1.1 Channel Selection Method based on Relevance Score 2.1.2 Codes_for_Mobile_BCI_Dataset 2.1.3 Motor_imagery_on_treadmill 2.1.4 frequency_optimized_local_region_CSP 2.2 Intuitive_BCI: contains general brain-computer interface-related functions that enable high-performance intuitive BCI system 2.2.1 Attention-based_spatio-temporal-spectral_feature_learning_for_subject-specific_EEG_classification 2.2.2 Imagined Speech Classification 2.2.3 Phoneme-level Speech Classification 2.2.4 Speaker_Identification 2.2.5 Transfer Learning for Imagined Speech

    3. Cognitive_BCI: contains the cognitive state-related function that enables to estimate of the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat 3.1 Changes in Resting-state EEG by Working Memory Process 3.2 Detection_Micro-sleep_Using_Transfer_Learning 3.3 EEG_Feature_Fusion 3.4 EEG_ICA_Pipeline_Classifier_Comparison_Tool 3.5 Ear_EEG_Biosignal 3.6 Hybrid_EEG&NIRS_concatenate_CNN 3.7 Multi-modal_Awareness_Status_Monitoring 3.8 NIRS_Channel_Selection_Program 3.9 Prediction_Individual_Anesthetic_Sensitivity 3.10 Prediction_Long-term_Memory_Based_on_Deep_Learning 3.11 Sleep Classification For Sleep Inducing System 3.12 Sleep_Inertia_Analysis_Using_EEG_data 3.13 Sleep_Stage_Classification_Using_EEG

    4. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training 4.1 MI_Analysis_based_on_ML 4.2 SSVEP_based_BCI_speller 4.3 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
    Source.code.zip(1317.45 MB)
  • DeepBCI(Dec 28, 2021)

    An open software package to develop Brain-Computer Interface (BCI) based brain and cognitive computing technology for recognizing user's intention using deep learning

    Web site: http://deepbci.korea.ac.kr/

    We provide detailed information in each folder and every function.

    The following items were updated in Deep BCI SW ver. 2.0

    1. Intelligent_BCI: contains a deep learning-based intelligent brain-computer interface-related function that enables high-performance intent recognition. 1.1 Atari_environment_sets_for_Goal_driven_learning 
1.2 CNN_Based_Motor_Imagery_Intention_Classifier
 1.3 Subject_Adaptive_EEG_based_Visual_Recognition

    2. Ambulatory_BCI: contains general brain-computer interface-related functions that enable high-performance intent recognition in an ambulatory environment 2.1 Ambulatory_BCI 
2.2 Intuitive_BCI

    3. Cognitive_BCI': contains the cognitive state-related function that enables to estimate the cognitive states from multi-modality and user-customized BCI multi-threshold graph metrics using a range of criteria: functions related to entrain brainwaves based on a combined auditory stimulus with a binaural beat

    3.1 Detection_Micro-sleep_Using_Transfer_Learning
 3.2 Prediction_Individual_Anesthetic_Sensitivity 
3.3 Prediction_Long-term_Memory_Based_on_Deep_Learning 
3.4 Sleep_Stage_Classification_Using_EEG
3.5 EEG_Feature_Fusion
 3.6 Ear_EEG_Biosignal 
3.7 Hybrid_EEG&NIRS_concatenate_CNN 
3.8 Multi-modal_Awareness_Status_Monitoring 
3.9 NIRS_Channel_Selection_Program

    1. Zero-Training_BCI: contains zero-training brain-computer interface-related functions that enable to minimize additional training
ERP-based_BCI_Algorithm_for_Zero_Training: functions related to Event-Related Potential (ERP) analysis including feature extraction, classification, and visualization 4.1 SSVEP_based_BCI_speller
 4.2 SSVEP_based_Othello

    Acknowledgment: This project was supported by the Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korean government (No. 2017-0-00451, Development of BCI-based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).

    Source code(tar.gz)
    Source code(zip)
Owner
deepbci
deepbci
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022