Implementing DropPath/StochasticDepth in PyTorch

Related tags

Deep LearningDropPath
Overview
%load_ext memory_profiler

Implementing Stochastic Depth/Drop Path In PyTorch

DropPath is available on glasses my computer vision library!

Introduction

Today we are going to implement Stochastic Depth also known as Drop Path in PyTorch! Stochastic Depth introduced by Gao Huang et al is technique to "deactivate" some layers during training.

Let's take a look at a normal ResNet Block that uses residual connections (like almost all models now).If you are not familiar with ResNet, I have an article showing how to implement it.

Basically, the block's output is added to its input: output = block(input) + input. This is called a residual connection

alt

Here we see four ResnNet like blocks, one after the other.

alt

Stochastic Depth/Drop Path will deactivate some of the block's weight

alt

The idea is to reduce the number of layers/block used during training, saving time and make the network generalize better.

Practically, this means setting to zero the output of the block before adding.

Implementation

Let's start by importing our best friend, torch.

import torch
from torch import nn
from torch import Tensor

We can define a 4D tensor (batch x channels x height x width), in our case let's just send 4 images with one pixel each :)

x = torch.ones((4, 1, 1, 1))

We need a tensor of shape batch x 1 x 1 x 1 that will be used to set some of the elements in the batch to zero, using a given prob. Bernoulli to the rescue!

keep_prob: float = .5
mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    
mask
tensor([[[[0.]]],


        [[[1.]]],


        [[[1.]]],


        [[[1.]]]])

Btw, this is equivelant to

mask: Tensor = (torch.rand(x.shape[0], 1, 1, 1) > keep_prob).float()
mask
tensor([[[[1.]]],


        [[[1.]]],


        [[[1.]]],


        [[[1.]]]])

Before we multiply x by the mask we need to divide x by keep_prob to rescale down the inputs activation during training, see cs231n. So

x_scaled : Tensor = x / keep_prob
x_scaled
tensor([[[[2.]]],


        [[[2.]]],


        [[[2.]]],


        [[[2.]]]])

Finally

output: Tensor = x_scaled * mask
output
tensor([[[[2.]]],


        [[[2.]]],


        [[[2.]]],


        [[[2.]]]])

We can put together in a function

def drop_path(x: Tensor, keep_prob: float = 1.0) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    x_scaled: Tensor = x / keep_prob
    return x_scaled * mask

drop_path(x, keep_prob=0.5)
tensor([[[[0.]]],


        [[[0.]]],


        [[[2.]]],


        [[[0.]]]])

We can also do the operation in place

def drop_path(x: Tensor, keep_prob: float = 1.0) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    x.div_(keep_prob)
    x.mul_(mask)
    return x


drop_path(x, keep_prob=0.5)
tensor([[[[2.]]],


        [[[2.]]],


        [[[0.]]],


        [[[0.]]]])

However, we may want to use x somewhere else, and dividing x or mask by keep_prob is the same thing. Let's arrive at the final implementation

def drop_path(x: Tensor, keep_prob: float = 1.0, inplace: bool = False) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    mask.div_(keep_prob)
    if inplace:
        x.mul_(mask)
    else:
        x = x * mask
    return x

x = torch.ones((4, 1, 1, 1))
drop_path(x, keep_prob=0.8)
tensor([[[[1.2500]]],


        [[[1.2500]]],


        [[[1.2500]]],


        [[[1.2500]]]])

drop_path only works for 2d data, we need to automatically calculate the number of dimensions from the input size to make it work for any data time

def drop_path(x: Tensor, keep_prob: float = 1.0, inplace: bool = False) -> Tensor:
    mask_shape: Tuple[int] = (x.shape[0],) + (1,) * (x.ndim - 1) 
    # remember tuples have the * operator -> (1,) * 3 = (1,1,1)
    mask: Tensor = x.new_empty(mask_shape).bernoulli_(keep_prob)
    mask.div_(keep_prob)
    if inplace:
        x.mul_(mask)
    else:
        x = x * mask
    return x

x = torch.ones((4, 1))
drop_path(x, keep_prob=0.8)
tensor([[0.],
        [0.],
        [0.],
        [0.]])

Let's create a nice DropPath nn.Module

class DropPath(nn.Module):
    def __init__(self, p: float = 0.5, inplace: bool = False):
        super().__init__()
        self.p = p
        self.inplace = inplace

    def forward(self, x: Tensor) -> Tensor:
        if self.training and self.p > 0:
            x = drop_path(x, self.p, self.inplace)
        return x

    def __repr__(self):
        return f"{self.__class__.__name__}(p={self.p})"

    
DropPath()(torch.ones((4, 1)))
tensor([[2.],
        [0.],
        [0.],
        [0.]])

Usage with Residual Connections

We have our DropPath, cool but how do we use it? We need a classic ResNet block, let's implement our good old friend BottleNeckBlock

from torch import nn


class ConvBnAct(nn.Sequential):
    def __init__(self, in_features: int, out_features: int, kernel_size=1):
        super().__init__(
            nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=kernel_size // 2),
            nn.BatchNorm2d(out_features),
            nn.ReLU()
        )
         

class BottleNeck(nn.Module):
    def __init__(self, in_features: int, out_features: int, reduction: int = 4):
        super().__init__()
        self.block = nn.Sequential(
            # wide -> narrow
            ConvBnAct(in_features, out_features // reduction, kernel_size=1),
            # narrow -> narrow
            ConvBnAct( out_features // reduction, out_features // reduction, kernel_size=3),
            # wide -> narrow
            ConvBnAct( out_features // reduction, out_features, kernel_size=1),
        )
        # I am lazy, no shortcut etc
        
    def forward(self, x: Tensor) -> Tensor:
        res = x
        x = self.block(x)
        return x + res
    
    
BottleNeck(64, 64)(torch.ones((1,64, 28, 28))).shape
torch.Size([1, 64, 28, 28])

To deactivate the block the operation x + res must be equal to res, so our DropPath has to be applied after the block.

class BottleNeck(nn.Module):
    def __init__(self, in_features: int, out_features: int, reduction: int = 4):
        super().__init__()
        self.block = nn.Sequential(
            # wide -> narrow
            ConvBnAct(in_features, out_features // reduction, kernel_size=1),
            # narrow -> narrow
            ConvBnAct( out_features // reduction, out_features // reduction, kernel_size=3),
            # wide -> narrow
            ConvBnAct( out_features // reduction, out_features, kernel_size=1),
        )
        # I am lazy, no shortcut etc
        self.drop_path = DropPath()
        
    def forward(self, x: Tensor) -> Tensor:
        res = x
        x = self.block(x)
        x = self.drop_path(x)
        return x + res
    
BottleNeck(64, 64)(torch.ones((1,64, 28, 28)))
tensor([[[[1.0009, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          ...,
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         [[1.0005, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          ...,
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0011, 1.0011,  ..., 1.0011, 1.0011, 1.0247]],

         [[1.0203, 1.0123, 1.0123,  ..., 1.0123, 1.0123, 1.0299],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          ...,
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         ...,

         [[1.0011, 1.0180, 1.0180,  ..., 1.0180, 1.0180, 1.0465],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          ...,
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         [[1.0130, 1.0170, 1.0170,  ..., 1.0170, 1.0170, 1.0213],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          ...,
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0012, 1.0139, 1.0139,  ..., 1.0139, 1.0139, 1.0065]],

         [[1.0103, 1.0181, 1.0181,  ..., 1.0181, 1.0181, 1.0539],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          ...,
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]]]],
       grad_fn=<AddBackward0>)

Tada 🎉 ! Now, randomly, our .block will be completely skipped!


Owner
Francesco Saverio Zuppichini
Computer Vision Engineer @ 🤗 BSc informatics. MSc AI. Artificial Intelligence /Deep Learning Enthusiast & Full Stack developer
Francesco Saverio Zuppichini
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023