DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

Overview

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper)

Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang

Abstract

In this paper, we address a new task called instance cosegmentation. Given a set of images jointly covering object instances of a specific category, instance co-segmentation aims to identify all of these instances and segment each of them, i.e. generating one mask for each instance. This task is important since instance-level segmentation is preferable for humans and many vision applications. It is also challenging because no pixel-wise annotated training data are available and the number of instances in each image is unknown. We solve this task by dividing it into two sub-tasks, co-peak search and instance mask segmentation. In the former sub-task, we develop a CNN-based network to detect the co-peaks as well as co-saliency maps for a pair of images. A co-peak has two endpoints, one in each image, that are local maxima in the response maps and similar to each other. Thereby, the two endpoints are potentially covered by a pair of instances of the same category. In the latter subtask, we design a ranking function that takes the detected co-peaks and co-saliency maps as inputs and can select the object proposals to produce the final results. Our method for instance co-segmentation and its variant for object colocalization are evaluated on four datasets, and achieve favorable performance against the state-of-the-art methods.

Examples

Two examples of instance co-segmentation on categories bird and sheep, respectively. An instance here refers to an object appearing in an image. In each example, the top row gives the input images while the bottom row shows the instances segmented by our method. The instance-specific coloring indicates that our method produces a segmentation mask for each instance.

Overview of our method

The proposed method contains two stages, co-peak search within the blue-shaded background and instance mask segmentation within the red-shaded background. For searching co-peaks in a pair of images, our model extracts image features, estimates their co-saliency maps, and performs feature correlation for co-peak localization. The model is optimized by three losses, including the co-peak loss, the affinity loss, and the saliency loss. For instance mask segmentation, we design a ranking function taking the detected co-peaks, the co-saliency maps, and the object proposals as inputs, and select the top-ranked proposal for each detected instance.

Results

  • Instance co-segmentation

The performance of instance co-segmentation on the four collected datasets is shown. The numbers in red and green show the best and the second best results, respectively. The column “trained” indicates whether additional training data are used.

  • Object co-localization

The performance of object co-localization on the four datasets is shown. The numbers in red and green indicate the best and the second best results, respectively. The column “trained” indicates whether additional training data are used.

Please cite our paper if this code is useful for your research.


@inproceedings{HsuCVPR19,
  author = {Kuang-Jui Hsu and Yen-Yu Lin and Yung-Yu Chuang},
  booktitle = {IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)},
  title = {DeepCO$^3$: Deep Instance Co-segmentation by Co-peak Search and Co-saliency Detection},
  year = {2019}
}

Codes for DeepCO3

Demo for all stages: "RunDeepInstCoseg.m"

  • Including all files in "Lib" (Downloading MatConvnet is not necessary)
  • May be slightly different from the ones in paper because of the randdom seeds

Datasets (about 34 GB):

  • Including four collected datasets
  • Containing the images, ground-truth masks, salinecy maps and object proposals
  • GoogleDrive

Results reported in the papers (about 4 GB):

Download Codes from GoogleDrive :


Errata:

  • Thank Howard Yu-Chun Lo for pointing the typo in Eq. (4). The corrected one is listed in the following:

Owner
Kuang-Jui Hsu
Kuang-Jui Hsu
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023