A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Overview

Probabilistic U-Net

+ **Update**
+ An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below.

Re-implementation of the model described in `A Probabilistic U-Net for Segmentation of Ambiguous Images' (paper @ NeurIPS 2018).

This was also a spotlight presentation at NeurIPS and a short video on the paper of similar content can be found here (4min).

The architecture of the Probabilistic U-Net is depicted below: subfigure a) shows sampling and b) the training setup:

Below see samples conditioned on held-out validation set images from the (stochastic) CityScapes data set:

Setup package in virtual environment

git clone https://github.com/SimonKohl/probabilistic_unet.git .
cd prob_unet/
virtualenv -p python3 venv
source venv/bin/activate
pip3 install -e .

Install batch-generators for data augmentation

cd ..
git clone https://github.com/MIC-DKFZ/batchgenerators
cd batchgenerators
pip3 install nilearn scikit-image nibabel
pip3 install -e .
cd prob_unet

Download & preprocess the Cityscapes dataset

  1. Create a login account on the Cityscapes website: https://www.cityscapes-dataset.com/
  2. Once you've logged in, download the train, val and test annotations and images:
  3. unzip the data (unzip _trainvaltest.zip) and adjust raw_data_dir (full path to unzipped files) and out_dir (full path to desired output directory) in preprocessing_config.py
  4. bilinearly rescale the data to a resolution of 256 x 512 and save as numpy arrays by running
cd cityscapes
python3 preprocessing.py
cd ..

Training

[skip to evaluation in case you only want to use the pretrained model.]
modify data_dir and exp_dir in scripts/prob_unet_config.py then:

cd training
python3 train_prob_unet.py --config prob_unet_config.py

Evaluation

Load your own trained model or use a pretrained model. A set of pretrained weights can be downloaded from zenodo.org (187MB). After down-loading, unpack the file via tar -xvzf pretrained_weights.tar.gz, e.g. in /model. In either case (using your own or the pretrained model), modify the data_dir and exp_dir in evaluation/cityscapes_eval_config.py to match you paths.

then first write samples (defaults to 16 segmentation samples for each of the 500 validation images):

cd ../evaluation
python3 eval_cityscapes.py --write_samples

followed by their evaluation (which is multi-threaded and thus reasonably fast):

python3 eval_cityscapes.py --eval_samples

The evaluation produces a dictionary holding the results. These can be visualized by launching an ipython notbook:

jupyter notebook evaluation_plots.ipynb

The following results are obtained from the pretrained model using above notebook:

Tests

The evaluation metrics are under test-coverage. Run the tests as follows:

cd ../tests/evaluation
python3 -m pytest eval_tests.py

Deviations from original work

The code found in this repository was not used in the original paper and slight modifications apply:

  • training on a single gpu (Titan Xp) instead of distributed training, which is not supported in this implementation
  • average-pooling rather than bilinear interpolation is used for down-sampling operations in the model
  • the number of conv kernels is kept constant after the 3rd scale as opposed to strictly doubling it after each scale (for reduction of memory footprint)
  • HeNormal weight initialization worked better than a orthogonal weight initialization

How to cite this code

Please cite the original publication:

@article{kohl2018probabilistic,
  title={A Probabilistic U-Net for Segmentation of Ambiguous Images},
  author={Kohl, Simon AA and Romera-Paredes, Bernardino and Meyer, Clemens and De Fauw, Jeffrey and Ledsam, Joseph R and Maier-Hein, Klaus H and Eslami, SM and Rezende, Danilo Jimenez and Ronneberger, Olaf},
  journal={arXiv preprint arXiv:1806.05034},
  year={2018}
}

License

The code is published under the Apache License Version 2.0.

Update: The Hierarchical Probabilistic U-Net + LIDC crops

We published an improved model, the Hierarchical Probabilistic U-Net at the Medical Imaging meets Neurips Workshop 2019.

The paper is available from arXiv under A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities, May 2019.

The model code is freely available from DeepMind's github repo, see here: code link.

The LIDC data can be downloaded as pngs, cropped to size 180 x 180 from Google Cloud Storage, see here: data link.

A pretrained model can be readily applied to the data using the following Google Colab: Open In Colab.

Owner
Simon Kohl
Simon Kohl
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022