This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

Overview

MLProject_01

This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

Context

Dataset

English question data set file

Feature Description

question answering

English data set data:

check answer

Create a Virtual Environment

Clone the repo:

git clone 
   
    
cd MLProject_01 

   

For the project, virtualenv is used. To install virtualenv:

pip install virtualenv

To create a virtual environment:

virtualenv venv

If it doesn't work then try:

python -m virtualenv venv

Activate the Virtual Environment:

For Windows:

.\venv\Scripts\activate

For Linux and MacOS:

source venv/bin/activate

Install Dependencies

Install the dependencies:

pip install -r requirements.txt

Build Docker Image

To build a Docker image:

docker build -t  .

TO run the image as a container:

docker run --rm -it -p 9696:9696 :latest

To test the prediction API running in docker, run _test.py locally.

Run the Jupyter Notebook

Run Jupiter notebook using the following command assuming we are inside the project directory:

jupyter notebook

Run the Model Locally

The final model training codes are exported in this file. To train the model:

python train.py

For local deployment, start up the Flask server for prediction API:

python predict.py

Or use a WSGI server, Waitress to run:

waitress-serve --listen=0.0.0.0:9696 predict:app

It will run the server on localhost using port 9696.

Finally, send a request to the prediction API http://localhost:9696/predict and get the response:

python predict_test.py

Run the Model in Cloud

The model is deployed on **Heroku ** and can be accessed using:

https://bank-marketing-system.herokuapp.com/predict

The API takes a JSON array of records as input and returns a response JSON array.

How to deploy a basic Flask application to Pythonanywhere can be found here. Only upload the .csv, train.py, and .py files inside the app directory. Then open a terminal and run train.py and predict.py files. Finally, reload the application. If everything is okay, then the API should be up and running.

To test the cloud API, again run _test.py from locally using the cloud API URL.

Owner
Hadi Nakhi
Full Stack Developer-Research & Learning About Machine Learning
Hadi Nakhi
Firebase + Cloudrun + Machine learning

A simple end to end consumer lending decision engine powered by Google Cloud Platform (firebase hosting and cloudrun)

Emmanuel Ogunwede 8 Aug 16, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

sklearn-compatible Random Bits Forest Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a b

Tamas Madl 8 Jul 24, 2021
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022