Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

Overview

sklearn-compatible Random Bits Forest

Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a binary on Sourceforge. All credits belong to the authors. This is just some quick and dirty wrapper and testing code.

The authors present "...a classification and regression algorithm called Random Bits Forest (RBF). RBF integrates neural network (for depth), boosting (for wideness) and random forest (for accuracy). It first generates and selects ~10,000 small three-layer threshold random neural networks as basis by gradient boosting scheme. These binary basis are then feed into a modified random forest algorithm to obtain predictions. In conclusion, RBF is a novel framework that performs strongly especially on data with large size."

Note: the executable supplied by the authors has been compiled for Linux, and for CPUs supporting SSE instructions.

Fig1 from Wang et al., 2016

Usage

Usage example of the Random Bits Forest:

from uci_loader import *
from randombitsforest import RandomBitsForest
X, y = getdataset('diabetes')

from sklearn.ensemble.forest import RandomForestClassifier

classifier = RandomBitsForest()
classifier.fit(X[:len(y)/2], y[:len(y)/2])
p = classifier.predict(X[len(y)/2:])
print "Random Bits Forest Accuracy:", np.mean(p == y[len(y)/2:])

classifier = RandomForestClassifier(n_estimators=20)
classifier.fit(X[:len(y)/2], y[:len(y)/2])
print "Random Forest Accuracy:", np.mean(classifier.predict(X[len(y)/2:]) == y[len(y)/2:])

Usage example for the UCI comparison:

from uci_comparison import compare_estimators
from sklearn.ensemble.forest import RandomForestClassifier, ExtraTreesClassifier
from randombitsforest import RandomBitsForest

estimators = {
              'RandomForest': RandomForestClassifier(n_estimators=200),
              'ExtraTrees': ExtraTreesClassifier(n_estimators=200),
              'RandomBitsForest': RandomBitsForest(number_of_trees=200)
            }

# optionally, pass a list of UCI dataset identifiers as the datasets parameter, e.g. datasets=['iris', 'diabetes']
# optionally, pass a dict of scoring functions as the metric parameter, e.g. metrics={'F1-score': f1_score}
compare_estimators(estimators)

"""
                          ExtraTrees F1score RandomBitsForest F1score RandomForest F1score
========================================================================================
  breastcancer (n=683)      0.960 (SE=0.003)      0.954 (SE=0.003)     *0.963 (SE=0.003)
       breastw (n=699)     *0.956 (SE=0.003)      0.951 (SE=0.003)      0.953 (SE=0.005)
      creditg (n=1000)     *0.372 (SE=0.005)      0.121 (SE=0.003)      0.371 (SE=0.005)
      haberman (n=306)      0.317 (SE=0.015)     *0.346 (SE=0.020)      0.305 (SE=0.016)
         heart (n=270)      0.852 (SE=0.004)     *0.854 (SE=0.004)      0.852 (SE=0.006)
    ionosphere (n=351)      0.740 (SE=0.037)     *0.741 (SE=0.037)      0.736 (SE=0.037)
          labor (n=57)      0.246 (SE=0.016)      0.128 (SE=0.014)     *0.361 (SE=0.018)
liverdisorders (n=345)      0.707 (SE=0.013)     *0.723 (SE=0.013)      0.713 (SE=0.012)
     tictactoe (n=958)      0.030 (SE=0.007)     *0.336 (SE=0.040)      0.030 (SE=0.007)
          vote (n=435)     *0.658 (SE=0.012)      0.228 (SE=0.017)     *0.658 (SE=0.012)
"""
Owner
Tamas Madl
Tamas Madl
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

154 Dec 17, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.

7.4k Jan 04, 2023
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022