Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

Overview

GENDIS Build Status PyPI version Read The Docs Downloads

GENetic DIscovery of Shapelets

In the time series classification domain, shapelets are small subseries that are discriminative for a certain class. It has been shown that by projecting the original dataset to a distance space, where each axis corresponds to the distance to a certain shapelet, classifiers are able to achieve state-of-the-art results on a plethora of datasets.

This repository contains an implementation of GENDIS, an algorithm that searches for a set of shapelets in a genetic fashion. The algorithm is insensitive to its parameters (such as population size, crossover and mutation probability, ...) and can quickly extract a small set of shapelets that is able to achieve predictive performances similar (or better) to that of other shapelet techniques.

Installation

We currently support Python 3.5 & Python 3.6. For installation, there are two alternatives:

  1. Clone the repository https://github.com/IBCNServices/GENDIS.git and run (python3 -m) pip -r install requirements.txt
  2. GENDIS is hosted on PyPi. You can just run (python3 -m) pip install gendis to add gendis to your dist-packages (you can use it from everywhere).

Make sure NumPy and Cython is already installed (pip install numpy and pip install Cython), since that is required for the setup script.

Tutorial & Example

1. Loading & preprocessing the datasets

In a first step, we need to construct at least a matrix with timeseries (X_train) and a vector with labels (y_train). Additionally, test data can be loaded as well in order to evaluate the pipeline in the end.

import pandas as pd
# Read in the datafiles
train_df = pd.read_csv(<DATA_FILE>)
test_df = pd.read_csv(<DATA_FILE>)
# Split into feature matrices and label vectors
X_train = train_df.drop('target', axis=1)
y_train = train_df['target']
X_test = test_df.drop('target', axis=1)
y_test = test_df['target']

2. Creating a GeneticExtractor object

Construct the object. For a list of all possible parameters, and a description, please refer to the documentation in the code

from gendis.genetic import GeneticExtractor
genetic_extractor = GeneticExtractor(population_size=50, iterations=25, verbose=True, 
                                     mutation_prob=0.3, crossover_prob=0.3, 
                                     wait=10, max_len=len(X_train) // 2)

3. Fit the GeneticExtractor and construct distance matrix

shapelets = genetic_extractor.fit(X_train, y_train)
distances_train = genetic_extractor.transform(X_train)
distances_test = genetic_extractor.transform(X_test)

4. Fit ML classifier on constructed distance matrix

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
lr = LogisticRegression()
lr.fit(distances_train, y_train)

print('Accuracy = {}'.format(accuracy_score(y_test, lr.predict(distances_test))))

Example notebook

A simple example is provided in this notebook

Data

All datasets in this repository are downloaded from timeseriesclassification. Please refer to them appropriately when using any dataset.

Paper experiments

In order to reproduce the results from the corresponding paper, please check out this directory.

Tests

We provide a few doctests and unit tests. To run the doctests: python3 -m doctest -v <FILE>, where <FILE> is the Python file you want to run the doctests from. To run unit tests: nose2 -v

Contributing, Citing and Contact

If you have any questions, are experiencing bugs in the GENDIS implementation, or would like to contribute, please feel free to create an issue/pull request in this repository or take contact with me at gilles(dot)vandewiele(at)ugent(dot)be

If you use GENDIS in your work, please use the following citation:

@article{vandewiele2021gendis,
  title={GENDIS: Genetic Discovery of Shapelets},
  author={Vandewiele, Gilles and Ongenae, Femke and Turck, Filip De},
  journal={Sensors},
  volume={21},
  number={4},
  pages={1059},
  year={2021},
  publisher={Multidisciplinary Digital Publishing Institute}
}
Owner
IDLab Services
Internet and Data Lab research group from Ghent University
IDLab Services
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Course files for "Ocean/Atmosphere Time Series Analysis"

time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an

Jonathan Lilly 107 Nov 29, 2022
Machine learning algorithms implementation

Machine learning algorithms implementation This repository consisits of implementation of various machine learning algorithms. The algorithms implemen

Karun Dawadi 1 Jan 03, 2022
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Emin 1 Dec 13, 2021
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
SPCL 48 Dec 12, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021