Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Overview

MLOps Platforms

MLOps is an especially confusing landscape with hundreds of tools available. This project helps to navigate the space of MLOps platforms.

Understanding MLOps platforms is complex. Platforms have their own specializations and there is no clear line between a tool (with a narrow focus) and a platform (which supports many ML lifecycle activities). The below (from the Thoughtworks Guide to MLOps Platforms) illustrates how some of the platforms specialize in particular areas (bottom) and others aim to cover the whole lifecycle with equal focus (top):

MLOps Landscape Diagram

Even platforms that have a similar scope have different concepts and strategies, making them hard to compare directly. This repository provides resources for evaluating MLOps platforms.

If you're wondering what process to use to evaluate MLOps platforms, see the Thoughtworks Guide. If you know how to evaluate MLOps platforms and want materials, read on.

Comparison Matrix Format

The matrix an open format of categories with links to vendor documentation within cells to highlight features. This lets vendors do things their own ways and helps readers find the detail they need.

Comparison Matrix

We suggest to click through to the master spreadsheet in google sheets:

matrix

If you can't access or don't like google sheets then there is a translation of the matrix into Github markdown

Platform Profiles

These profiles are concise marketing-free introductions to key concepts of MLOps platforms. This provides just enough context to make sense of the features in the matrix.

Contributions

Everyone is welcome to contribute, including vendors. Language should be neutral - marketing language will not be accepted.

Changes are welcome by PR or issues - please create a copy of the spreadsheet, link to or upload your copy and explain which parts are changed. Please follow the existing format or raise an issue in advance to suggest changes to the format. On approval a maintainer will then update the master spreadsheet used to generate the markdown.

Disclaimer

We do our best to keep this information accurate and up-to-date but cannot provide guarantees. References to documentation are provided throughout so readers can check for themselves. If you spot anything inaccurate then please raise an issue or pull request (see Contributing section).

Owner
Thoughtworks
Thoughtworks
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
Diabetes Prediction with Logistic Regression

Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

AZİZE SULTAN PALALI 2 Oct 23, 2021
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022