Machine Learning Study 혼자 해보기

Overview

Machine Learning Study 혼자 해보기


기여자 (Contributors)


Teddy Lee

🏠

HongJaeKwon

🏠

Seungwoo Han

🏠

Tae Heon Kim

🏠

Steve Kwon

🏠

SW Song

🏠

K1A2

🏠

Wooil Jeong

🏠

더 많은 분들이 도움을 받으실 수 있도록, 좋은 공유 자료에 대하여 Pull Request를 날려주세요!


지식공유 (Knowledge Sharings)

블로그, 유튜브를 통해 지식공유를 실천하고 있습니다.

취지

This repository is intended for personal study in machine-learning

머신러닝 분야를 스스로 스터디 하는 많은 분들께 도움이 되고자 작성하였습니다.

온라인 상에서 좋은 분들이 공유해 주신 Lecture와 Blog를 참고하여 스터디 하실 수 있습니다.

직접 들은 강의는 코멘트하였으나, 지극히 개인적인 의견이 반영 되었습니다.


동영상 강의 묶음, 재생목록 (Video Lectures)

Video 강좌는 제가 개인적으로 생각하는 순차적 학습 단계 입니다. 물론, 난이도와도 연관이 있습니다.

파이썬 (Python), 데이터분석 (Pandas, Numpy), 시각화 (Matplotlib, Seaborn, Bokeh, Folium)

수학 (Mathmatics) & 통계 (Statistics)

머신러닝 (Machine Learning) & 딥러닝 (Deep Learning)

국가 공인 자격증

주제별 (By Subjects)

수학 (Mathmatics)

통계 (Statistics)

머신러닝 (Machine Learning)

딥러닝 (Deep Learning)

최적화 & AutoML (Optimization & AutoML)

메타러닝 (Meta Learning)

액티브러닝 (Active Learning)

연합학습 (Federated Learning)

시각화 (Visualization)

기타 (Others)

캐글 & 데이콘

캐글이 처음이라면?

Hello Kaggle!

Kaggle Tutorial | PyTorch Basic

Kaggle Tutorial | Image/Object Detection

Kaggle Tutorial | Natural Language Processing

Kaggle Tutorial | R Machine Learning

강의 & 강연

정형데이터

강연

노트북

캐글 & 데이콘 대회 분류

입문 (For Beginners)

비전 (Vision)

시계열 (Time Series)

음성

블로그 (Blogs)

깃헙 저장소 (GitHub)

튜토리얼(Tutorial)

강의(Lecture)

자연어처리(Natural Language Processing

Computer Vision

Signal Processing

GAN

논문

서적 예제

웹사이트 (Web Sites)

  • 머신러닝 용어집
    • 머신러닝 용어들이 정리되어 있는 구글 developer 사이트.
  • pandas tutorial
    • 판다스 튜토리얼 (주요 api 위주로 진행하는 튜토리얼)
  • 20 minutes to matplotlib
    • 20분안에 빠르게 훓어보는 matplotlib (주요 api 위주로 진행하는 튜토리얼)
  • 각 종 CheatSheet 모음
    • python, pandas, numpy, matplotlib, seaborn 등등 각종 CheatSheet 모음집
  • Paper With Code
    • 논문과 관련된 깃허브 저장소를 동시에 제공합니다.
  • Codetorial
    • numpy, matpoltlib, tensorflow 뿐만 아니라 파이썬에서 많이 사용되는 라이브러리들에 대한 튜토리얼들이 정리되어 있습니다.
  • Keras Examples
    • 케라서 공식 도큐먼트에서 제공되는 example 예제 모음. 300줄 이하의 코드로 구성되어 있으며, 다양한 기본 예제들이 있다.
  • 자연어처리 100제
    • 자연어 처리 관련된 문제 100제를 풀어보는 사이트
  • 자연어(NLP) 처리 기초 정리
  • Machine Learning Mastery(영문)
    • 머신 러닝 개념을 파이썬 코드를 통해 직접 구현해 볼 수 있습니다. 제공해 주는 Python 코드 예제가 좋습니다.
  • Deep Note
    • Jupyter Notebook에 도전장을 내미는 데이터 사이언스 Notebook. 궁금하신 분들은 사용해 보시길!
  • OpenAI Spinning Up
    • OpenAI의 강화 학습 교육 자료
  • GUI for TensorFlow
    • GUI로 텐서플로우 모델 만들기
  • arXiv - 논문저장소
    • 논문 저장소. 인공지능, 프로그래밍 등 거의 모든 논문을 찾아볼 수 있다.
  • arXiv sanity
    • 일정 기간동안 원하는 주제에 대한 인기 있는 arXiv 논문을 볼 수 있다.
  • PyTorch 입문코스 5개
    • 마이크로소프트 Learn. 파이토치 기초, 파이토치를 사용한 이미지/자연어/오디오
  • PyTorch 튜토리얼 (한글)
    • PyTorch 웹사이트에서 제공하는 공식 튜토리얼의 한글 번역 버전

위키독스 (Wiki Docs)

유튜브 채널 (YouTube Channel)

  • SKPlanet TAcademy
    • 인공지능 강의 뿐만아니라 테크 분야의 다양한 분야의 정말 좋은 강의를 무료로 제공합니다.
  • 빵형의 개발도상국
    • 재미난 인공지능을 활용한 다양한 프로젝트를 진행해보고 풀이까지 쉽게 제공.
  • 한요섭님 - 딥러닝
    • 논문에 대한 리뷰, 구현까지 쉽게 설명해주시는 강의형 영상이 있습니다.
  • 이유한님 - 캐글
    • 캐글 커널 리뷰와 다양한 캐글 팁들을 알려주시는 영상으로 구성되어 있는 채널.
  • 허민석님 - Minsuk Heo
    • 딥러닝 관련 영상들이 많이 게재되어 있으며, 깔끔한 PPT와 쉽고 간결한 설명의 강의 영상들이 많다.
  • 공돌이의 수학정리노트
    • 공돌이의 수학정리노트 블로그에 이은, 쉽게 설명하는 수학 강의 영상 채널.
  • 혁펜하임
    • 머신러닝, 딥러닝 관련 강의를 재밌고, 이해 하기 쉽게 설명하는 유튜브 채널.
  • 퇴근후딴짓
    • 캐글 튜토리얼과 다양한 머신러닝 툴에 대해서도 다룹니다. 차분하게 배워볼 수 있는 유튜브 채널.
  • 테디노트
    • 텐서플로우 관련 영상들이 주를 이룹니다. 데이터 분석, 머신러닝, 그리고 딥러닝 주제를 다루는 유튜브 채널.
  • StatQuest with Josh Starmer
    • 머신러닝의 배경이 되는 통계학을 그림과 함께 쉽고 간결하게 설명해 주는 채널.
  • Venelin Valkov
    • 머신러닝을 활용한 예제 및 정보를 소개해주는 채널
  • sentdex
    • 머신러닝을 활용한 프로젝트 및 강좌 채널
  • 통계의 본질 EOStatistics
    • 통계의 이론 강의가 쉽게 설명되어 있는 유튜브 채널. 특히, 손으로 푸는 통계 강의 목록이 초심자에게는 매우 이해하기 쉽게 설명되어 있다.
  • Upstage
    • 김성훈 교수님, 이활석님, 박은정님께서 창업하신 인공지능(AI) 전문기업 업스테이지의 유튜브 채널. 입문자를 위한 캐글 관련 영상들이 게재되어 있고, 그 밖에 유용한 정보들도 있다.
  • AI프렌즈
    • 인공지능 기술을 공유하는 산-학-연 중심의 비영리 연구모임. 유튜브 라이브로 게스트를 초청하여 약 2시간 분량의 발표를 진행 / 녹화하여 공유하고 있다.

논문 읽기 (YouTube)

데이터 사이언티스트 스토리 (Data Scientist Story)

코딩하는 테크보이 워니

Data Scientist이지영님

터닝포인트TP, 취업 전문 유튜브

딥러닝호형 DL bro

데이터 사이언스를 공부하고 싶은 분들을 위한 글

페이스북 그룹 (Facebook Groups)

라이브러리 (Library)

  • Tensorflow
    • 딥 뉴럴 네트워크
  • PyTorch
    • 딥 뉴럴 네트워크
  • Scikit-learn
    • 머신러닝
  • BindsNET
    • 스파이킹 뉴럴 네트워크 for Pytorch
  • NengoDL
    • 스파이킹 뉴럴 네트워크 for Tensorflow
  • HpBandster
    • 하이퍼밴드 및 베이지안-하이퍼밴드 기반 파라미터 최적화 라이브러리

오픈데이터

텐서플로우 자격증

빅데이터 분석기사

기타

Owner
Teddy Lee
Google TensorFlow Developers Certificate. Interested in ML, DL, Lectures, Knowledge Sharing
Teddy Lee
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Nicholas Monath 31 Nov 03, 2022
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021