Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Overview

Training Script for Reuse-VOS

This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Hard case (Ours, FRTM)

sample ours hard (Ours)

sample FRTM hard (FRTM)

Easy case (Ours, FRTM)

sample ours easy(Ours)

sample FRTM easy(FRTM)

Requirement

python package

  • torch
  • python-opencv
  • skimage
  • easydict

GPU support

  • GPU Memory >= 11GB (RN18)
  • CUDA >= 10.0
  • pytorch >= 1.4.0

Datasets

DAVIS

To test the DAVIS validation split, download and unzip the 2017 480p trainval images and annotations here.

/path/DAVIS
|-- Annotations/
|-- ImageSets/
|-- JPEGImages/

YouTubeVOS

To test our validation split and the YouTubeVOS challenge 'valid' split, download YouTubeVOS 2018 and place it in this directory structure:

/path/ytvos2018
|-- train/
|-- train_all_frames/
|-- valid/
`-- valid_all_frames/

Release

DAVIS

model Backbone Training set J & F 17 J & F 16 link
G-FRTM (t=1) Resnet18 Youtube-VOS + DAVIS 71.7 80.9 Google Drive
G-FRTM (t=0.7) Resnet18 Youtube-VOS + DAVIS 69.9 80.5 same pth
G-FRTM (t=1) Resnet101 Youtube-VOS + DAVIS 76.4 84.3 Google Drive
G-FRTM (t=0.7) Resnet101 Youtube-VOS + DAVIS 74.3 82.3 same pth

Youtube-VOS

model Backbone Training set G J-S J-Us F-S F-Us link
G-FRTM (t=1) Resnet18 Youtube-VOS 63.8 68.3 55.2 70.6 61.0 Google Drive
G-FRTM (t=0.8) Resnet18 Youtube-VOS 63.4 67.6 55.8 69.3 60.9 same pth
G-FRTM (t=0.7) Resnet18 Youtube-VOS 62.7 67.1 55.2 68.2 60.1 same pth

We initialize orignal-FRTM layers from official FRTM repository weight for Youtube-VOS benchmark. S = Seen, Us = Unseen

Target model cache

Here is the cache file we used for ResNet18 file

Run

Train

Open train.py and adjust the paths dict to your dataset locations, checkpoint and tensorboard output directories and the place to cache target model weights.

To train a network, run following command.

python train.py --name <session-name> --ftext resnet18 --dset all --dev cuda:0

--name is the name of save_dir name of current train --ftext is the name of the feature extractor, either resnet18 or resnet101. --dset is one of dv2017, ytvos2018 or all ("all" really means "both"). --dev is the name of the device to train on. --m1 is the margin1 for training reuse gate, and we use 1.0 for DAVIS benchmark and 0.5 for Youtube-VOS benchmark. --m2 is the margin2 for training reuse gate, and we use 0.

Replace "session-name" with whatever you like. Subdirectories with this name will be created under your checkpoint and tensorboard paths.

Eval

Open eval.py and adjust the paths dict to your dataset locations, checkpoint and tensorboard output directories and the place to cache target model weights.

To train a network, run following command.

python evaluate.py --ftext resnet18 --dset dv2017val --dev cuda:0

--ftext is the name of the feature extractor, either resnet18 or resnet101. --dset is one of dv2016val, dv2017val, yt2018jjval, yt2018val or yt2018valAll --dev is the name of the device to eval on. --TH Threshold for tau default= 0.7

The inference results will be saved at ${ROOT}/${result} . It is better to check multiple pth file for good accuracy.

Acknowledgement

This codebase borrows the code and structure from official FRTM repository. We are grateful to Facebook Inc. with valuable discussions.

Reference

The codebase is built based on following works

@misc{park2020learning,
      title={Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation}, 
      author={Hyojin Park and Jayeon Yoo and Seohyeong Jeong and Ganesh Venkatesh and Nojun Kwak},
      year={2020},
      eprint={2012.11655},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
HYOJINPARK
HYOJINPARK
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021