Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

Overview

CMPC-Refseg

Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension.

Shaofei Huang*, Tianrui Hui*, Si Liu, Guanbin Li, Yunchao Wei, Jizhong Han, Luoqi Liu, Bo Li (* Equal contribution)

Interpretation of CMPC.

  • (a) Input referring expression and image.

  • (b) The model first perceives all the entities described in the expression based on entity words and attribute words, e.g., “man” and “white frisbee” (orange masks and blue outline).

  • (c) After finding out all the candidate entities that may match with input expression, relational word “holding” can be further exploited to highlight the entity involved with the relationship (green arrow) and suppress the others which are not involved.

  • (d) Benefiting from the relation-aware reasoning process, the referred entity is found as the final prediction (purple mask). interpretation

Experimental Results

We modify the way of feature concatenation in the end of CMPC module and achieve higher performances than the results reported in our paper. New experimental results are summarized in the table bellow. You can download our trained checkpoints to test on the four datasets. The link to the checkpoints is: Baidu Drive, pswd: jjsf.

Method UNC val UNC testA UNC testB UNC+ val UNC+ testA UNC+ testB G-Ref val ReferIt test
STEP-ICCV19 [1] 60.04 63.46 57.97 48.19 52.33 40.41 46.40 64.13
Ours-CVPR20 61.36 64.53 59.64 49.56 53.44 43.23 49.05 65.53
Ours-Updated 62.47 65.08 60.82 50.25 54.04 43.47 49.89 65.58

Setup

We recommended the following dependencies.

  • Python 2.7
  • TensorFlow 1.5
  • Numpy
  • pydensecrf

This code is derived from RRN [2]. Please refer to it for more details of setup.

Data Preparation

  • Dataset Preprocessing

We conduct experiments on 4 datasets of referring image segmentation, including UNC, UNC+, Gref and ReferIt. After downloading these datasets, you can run the following commands for data preparation:

python build_batches.py -d Gref -t train
python build_batches.py -d Gref -t val
python build_batches.py -d unc -t train
python build_batches.py -d unc -t val
python build_batches.py -d unc -t testA
python build_batches.py -d unc -t testB
python build_batches.py -d unc+ -t train
python build_batches.py -d unc+ -t val
python build_batches.py -d unc+ -t testA
python build_batches.py -d unc+ -t testB
python build_batches.py -d referit -t trainval
python build_batches.py -d referit -t test
  • Glove Embedding

Download Gref_emb.npy and referit_emb.npy and put them in data/. We provide download link for Glove Embedding here: Baidu Drive, password: 2m28.

Training

Train on UNC training set with:

python -u trainval_model.py -m train -d unc -t train -n CMPC_model -emb -f ckpts/unc/cmpc_model

Testing

Test on UNC validation set with:

python -u trainval_model.py -m test -d unc -t val -n CMPC_model -i 700000 -c -emb -f ckpts/unc/cmpc_model

CMPC for video referring segmentation

We release video version code for CMPC on A2D dataset under CMPC_video/.

Reference

[1] Chen, Ding-Jie, et al. "See-through-text grouping for referring image segmentation." Proceedings of the IEEE International Conference on Computer Vision. 2019.

[2] Li, Ruiyu, et al. "Referring image segmentation via recurrent refinement networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Citation

If our CMPC is useful to your research, please consider citing:

@inproceedings{huang2020referring,
  title={Referring Image Segmentation via Cross-Modal Progressive Comprehension},
  author={Huang, Shaofei and Hui, Tianrui and Liu, Si and Li, Guanbin and Wei, Yunchao and Han, Jizhong and Liu, Luoqi and Li, Bo},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10488--10497},
  year={2020}
}
Owner
spyflying
Two students of Cola Lab, BUAA.
spyflying
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022