Pytorch version of SfmLearner from Tinghui Zhou et al.

Overview

SfMLearner Pytorch version

This codebase implements the system described in the paper:

Unsupervised Learning of Depth and Ego-Motion from Video

Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe

In CVPR 2017 (Oral).

See the project webpage for more details.

Original Author : Tinghui Zhou ([email protected]) Pytorch implementation : Clément Pinard ([email protected])

sample_results

Preamble

This codebase was developed and tested with Pytorch 1.0.1, CUDA 10 and Ubuntu 16.04. Original code was developped in tensorflow, you can access it here

Prerequisite

pip3 install -r requirements.txt

or install manually the following packages :

pytorch >= 1.0.1
pebble
matplotlib
imageio
scipy
argparse
tensorboardX
blessings
progressbar2
path.py

Note

Because it uses latests pytorch features, it is not compatible with anterior versions of pytorch.

If you don't have an up to date pytorch, the tags can help you checkout the right commits corresponding to your pytorch version.

What has been done

  • Training has been tested on KITTI and CityScapes.
  • Dataset preparation has been largely improved, and now stores image sequences in folders, making sure that movement is each time big enough between each frame
  • That way, training is now significantly faster, running at ~0.14sec per step vs ~0.2s per steps initially (on a single GTX980Ti)
  • In addition you don't need to prepare data for a particular sequence length anymore as stacking is made on the fly.
  • You can still choose the former stacked frames dataset format.
  • Convergence is now almost as good as original paper with same hyper parameters
  • You can know compare with groud truth for your validation set. It is still possible to validate without, but you now can see that minimizing photometric error is not equivalent to optimizing depth map.

Differences with official Implementation

  • Smooth Loss is different from official repo. Instead of applying it to disparity, we apply it to depth. Original disparity smooth loss did not work well (don't know why !) and it did not even converge at all with weight values used (0.5).
  • loss is divided by 2.3 when downscaling instead of 2. This is the results of empiric experiments, so the optimal value is clearly not carefully determined.
  • As a consequence, with a smooth loss of 2.0̀, depth test is better, but Pose test is worse. To revert smooth loss back to original, you can change it here

Preparing training data

Preparation is roughly the same command as in the original code.

For KITTI, first download the dataset using this script provided on the official website, and then run the following command. The --with-depth option will save resized copies of groundtruth to help you setting hyper parameters. The --with-pose will dump the sequence pose in the same format as Odometry dataset (see pose evaluation)

python3 data/prepare_train_data.py /path/to/raw/kitti/dataset/ --dataset-format 'kitti' --dump-root /path/to/resulting/formatted/data/ --width 416 --height 128 --num-threads 4 [--static-frames /path/to/static_frames.txt] [--with-depth] [--with-pose]

For Cityscapes, download the following packages: 1) leftImg8bit_sequence_trainvaltest.zip, 2) camera_trainvaltest.zip. You will probably need to contact the administrators to be able to get it. Then run the following command

python3 data/prepare_train_data.py /path/to/cityscapes/dataset/ --dataset-format 'cityscapes' --dump-root /path/to/resulting/formatted/data/ --width 416 --height 171 --num-threads 4

Notice that for Cityscapes the img_height is set to 171 because we crop out the bottom part of the image that contains the car logo, and the resulting image will have height 128.

Training

Once the data are formatted following the above instructions, you should be able to train the model by running the following command

python3 train.py /path/to/the/formatted/data/ -b4 -m0.2 -s0.1 --epoch-size 3000 --sequence-length 3 --log-output [--with-gt]

You can then start a tensorboard session in this folder by

tensorboard --logdir=checkpoints/

and visualize the training progress by opening https://localhost:6006 on your browser. If everything is set up properly, you should start seeing reasonable depth prediction after ~30K iterations when training on KITTI.

Evaluation

Disparity map generation can be done with run_inference.py

python3 run_inference.py --pretrained /path/to/dispnet --dataset-dir /path/pictures/dir --output-dir /path/to/output/dir

Will run inference on all pictures inside dataset-dir and save a jpg of disparity (or depth) to output-dir for each one see script help (-h) for more options.

Disparity evaluation is avalaible

python3 test_disp.py --pretrained-dispnet /path/to/dispnet --pretrained-posenet /path/to/posenet --dataset-dir /path/to/KITTI_raw --dataset-list /path/to/test_files_list

Test file list is available in kitti eval folder. To get fair comparison with Original paper evaluation code, don't specify a posenet. However, if you do, it will be used to solve the scale factor ambiguity, the only ground truth used to get it will be vehicle speed which is far more acceptable for real conditions quality measurement, but you will obviously get worse results.

Pose evaluation is also available on Odometry dataset. Be sure to download both color images and pose !

python3 test_pose.py /path/to/posenet --dataset-dir /path/to/KITIT_odometry --sequences [09]

ATE (Absolute Trajectory Error) is computed as long as RE for rotation (Rotation Error). RE between R1 and R2 is defined as the angle of R1*R2^-1 when converted to axis/angle. It corresponds to RE = arccos( (trace(R1 @ R2^-1) - 1) / 2). While ATE is often said to be enough to trajectory estimation, RE seems important here as sequences are only seq_length frames long.

Pretrained Nets

Avalaible here

Arguments used :

python3 train.py /path/to/the/formatted/data/ -b4 -m0 -s2.0 --epoch-size 1000 --sequence-length 5 --log-output --with-gt

Depth Results

Abs Rel Sq Rel RMSE RMSE(log) Acc.1 Acc.2 Acc.3
0.181 1.341 6.236 0.262 0.733 0.901 0.964

Pose Results

5-frames snippets used

Seq. 09 Seq. 10
ATE 0.0179 (std. 0.0110) 0.0141 (std. 0.0115)
RE 0.0018 (std. 0.0009) 0.0018 (std. 0.0011)

Discussion

Here I try to link the issues that I think raised interesting questions about scale factor, pose inference, and training hyperparameters

  • Issue 48 : Why is target frame at the center of the sequence ?
  • Issue 39 : Getting pose vector without the scale factor uncertainty
  • Issue 46 : Is Interpolated groundtruth better than sparse groundtruth ?
  • Issue 45 : How come the inverse warp is absolute and pose and depth are only relative ?
  • Issue 32 : Discussion about validation set, and optimal batch size
  • Issue 25 : Why filter out static frames ?
  • Issue 24 : Filtering pixels out of the photometric loss
  • Issue 60 : Inverse warp is only one way !

Other Implementations

TensorFlow by tinghuiz (original code, and paper author)

Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023