Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

Overview

A Latent Transformer for Disentangled Face Editing in Images and Videos

Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

[Video Editing Results]

Requirements

Dependencies

  • Python 3.6
  • PyTorch 1.8
  • Opencv
  • Tensorboard_logger

You can install a new environment for this repo by running

conda env create -f environment.yml
conda activate lattrans 

Prepare StyleGAN2 encoder and generator

  • We use the pretrained StyleGAN2 encoder and generator released from paper Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation. Download and save the official implementation to pixel2style2pixel/ directory. Download and save the pretrained model to pixel2style2pixel/pretrained_models/.

  • In order to save the latent codes to the designed path, we slightly modify pixel2style2pixel/scripts/inference.py.

    # modify run_on_batch()
    if opts.latent_mask is None:
        result_batch = net(inputs, randomize_noise=False, resize=opts.resize_outputs, return_latents=True)
        
    # modify run()
    tic = time.time()
    result_batch, latent_batch = run_on_batch(input_cuda, net, opts) 
    latent_save_path = os.path.join(test_opts.exp_dir, 'latent_code_%05d.npy'%global_i)
    np.save(latent_save_path, latent_batch.cpu().numpy())
    toc = time.time()
    

Training

  • Prepare the training data

    To train the latent transformers, you can download our prepared dataset to the directory data/ and the pretrained latent classifier to the directory models/.

    sh download.sh
    

    You can also prepare your own training data. To achieve that, you need to map your dataset to latent codes using the StyleGAN2 encoder. The corresponding label file is also required. You can continue to use our pretrained latent classifier. If you want to train your own latent classifier on new labels, you can use pretraining/latent_classifier.py.

  • Training

    You can modify the training options of the config file in the directory configs/.

    python train.py --config 001 
    

Testing

Single Attribute Manipulation

Make sure that the latent classifier is downloaded to the directory models/ and the StyleGAN2 encoder is prepared as required. After training your latent transformers, you can use test.py to run the latent transformer for the images in the test directory data/test/. We also provide several pretrained models here (run download.sh to download them). The output images will be saved in the folder outputs/. You can change the desired attribute with --attr.

python test.py --config 001 --attr Eyeglasses --out_path ./outputs/

If you want to test the model on your custom images, you need to first encoder the images to the latent space of StyleGAN using the pretrained encoder.

cd pixel2style2pixel/
python scripts/inference.py \
--checkpoint_path=pretrained_models/psp_ffhq_encode.pt \
--data_path=../data/test/ \
--exp_dir=../data/test/ \
--test_batch_size=1

Sequential Attribute Manipulation

You can reproduce the sequential editing results in the paper using notebooks/figure_sequential_edit.ipynb and the results in the supplementary material using notebooks/figure_supplementary.ipynb.

User Interface

We also provide an interactive visualization notebooks/visu_manipulation.ipynb, where the user can choose the desired attributes for manipulation and define the magnitude of edit for each attribute.

Video Manipulation

Video Result

We provide a script to achieve attribute manipulation for the videos in the test directory data/video/. Please ensure that the StyleGAN2 encoder is prepared as required. You can upload your own video and modify the options in run_video_manip.sh. You can view our video editing results presented in the paper.

sh run_video_manip.sh

Citation

@article{yao2021latent,
  title={A Latent Transformer for Disentangled Face Editing in Images and Videos},
  author={Yao, Xu and Newson, Alasdair and Gousseau, Yann and Hellier, Pierre},
  journal={2021 International Conference on Computer Vision},
  year={2021}
}

License

Copyright © 2021, InterDigital R&D France. All rights reserved.

This source code is made available under the license found in the LICENSE.txt in the root directory of this source tree.

[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022