An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

Overview

Automatic Augmentation Zoo

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

We will post updates regularly so you can star 🌟 or watch 👓 this repository for the latest.

Introduction

This repository provides the official implementations of OHL and AWS, and will also integrate some other popular auto-aug methods (like Auto Augment, Fast AutoAugment and Adversarial autoaugment) in pure PyTorch. We use torch.distributed to conduct the distributed training. The model checkpoints will be upload to GoogleDrive or OneDrive soon.

Dependencies

It would be recommended to conduct experiments under:

  • python 3.6.3
  • pytorch 1.1.0, torchvision 0.2.1

All the dependencies are listed in requirements.txt. You may use commands like pip install -r requirements.txt to install them.

Running

  1. Create the directory for your experiment.
cd /path/to/this/repo
mkdir -p exp/aws_search1
  1. Copy configurations into your workspace.
cp scripts/search.sh configs/aws.yaml exp/aws_search1
cd exp/aws_search1
  1. Start searching
# sh ./search.sh  
sh ./search.sh Test 8

An instance of yaml:

version: 0.1.0

dist:
    type: torch
    kwargs:
        node0_addr: auto
        node0_port: auto
        mp_start_method: fork   # fork or spawn; spawn would be too slow for Dalaloader

pipeline:
    type: aws
    common_kwargs:
        dist_training: &dist_training False
#        job_name:         [will be assigned in runtime]
#        exp_root:         [will be assigned in runtime]
#        meta_tb_lg_root:  [will be assigned in runtime]

        data:
            type: cifar100               # case-insensitive (will be converted to lower case in runtime)
#            dataset_root: /path/to/dataset/root   # default: ~/datasets/[type]
            train_set_size: 40000
            val_set_size: 10000
            batch_size: 256
            dist_training: *dist_training
            num_workers: 3
            cutout: True
            cutlen: 16

        model_grad_clip: 3.0
        model:
            type: WRN
            kwargs:
#                num_classes: [will be assigned in runtime]
                bn_mom: 0.5

        agent:
            type: ppo           # ppo or REINFORCE
            kwargs:
                initial_baseline_ratio: 0
                baseline_mom: 0.9
                clip_epsilon: 0.2
                max_training_times: 5
                early_stopping_kl: 0.002
                entropy_bonus: 0
                op_cfg:
                    type: Adam         # any type in torch.optim
                    kwargs:
#                        lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
                        betas: !!python/tuple [0.5, 0.999]
                        weight_decay: 0
                sc_cfg:
                    type: Constant
                    kwargs:
                        base_lr_divisor: 8      # base_lr = warmup_lr / base_lr_divisor
                        warmup_lr: 0.1          # lr at the end of warming up
                        warmup_iters: 10      # warmup_epochs = epochs / warmup_divisor
                        iters: &finetune_lp 350
        
        criterion:
            type: LSCE
            kwargs:
                smooth_ratio: 0.05


    special_kwargs:
        pretrained_ckpt_path: ~ # /path/to/pretrained_ckpt.pth.tar
        pretrain_ep: &pretrain_ep 200
        pretrain_op: &sgd
            type: SGD       # any type in torch.optim
            kwargs:
#                lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
                nesterov: True
                momentum: 0.9
                weight_decay: 0.0001
        pretrain_sc:
            type: Cosine
            kwargs:
                base_lr_divisor: 4      # base_lr = warmup_lr / base_lr_divisor
                warmup_lr: 0.2          # lr at the end of warming up
                warmup_divisor: 200     # warmup_epochs = epochs / warmup_divisor
                epochs: *pretrain_ep
                min_lr: &finetune_lr 0.001

        finetuned_ckpt_path: ~  # /path/to/finetuned_ckpt.pth.tar
        finetune_lp: *finetune_lp
        finetune_ep: &finetune_ep 10
        rewarded_ep: 2
        finetune_op: *sgd
        finetune_sc:
            type: Constant
            kwargs:
                base_lr: *finetune_lr
                warmup_lr: *finetune_lr
                warmup_iters: 0
                epochs: *finetune_ep

        retrain_ep: &retrain_ep 300
        retrain_op: *sgd
        retrain_sc:
            type: Cosine
            kwargs:
                base_lr_divisor: 4      # base_lr = warmup_lr / base_lr_divisor
                warmup_lr: 0.4          # lr at the end of warming up
                warmup_divisor: 200     # warmup_epochs = epochs / warmup_divisor
                epochs: *retrain_ep
                min_lr: 0

Citation

If you're going to to use this code in your research, please consider citing our papers (OHL and AWS).

@inproceedings{lin2019online,
  title={Online Hyper-parameter Learning for Auto-Augmentation Strategy},
  author={Lin, Chen and Guo, Minghao and Li, Chuming and Yuan, Xin and Wu, Wei and Yan, Junjie and Lin, Dahua and Ouyang, Wanli},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={6579--6588},
  year={2019}
}

@article{tian2020improving,
  title={Improving Auto-Augment via Augmentation-Wise Weight Sharing},
  author={Tian, Keyu and Lin, Chen and Sun, Ming and Zhou, Luping and Yan, Junjie and Ouyang, Wanli},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Contact for Issues

References & Opensources

Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022