PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Overview

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Stanford University.

prediction example

Introduction

This work is based on our arXiv tech report, which is going to appear in CVPR 2017. We proposed a novel deep net architecture for point clouds (as unordered point sets). You can also check our project webpage for a deeper introduction.

Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds, which well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective.

In this repository, we release code and data for training a PointNet classification network on point clouds sampled from 3D shapes, as well as for training a part segmentation network on ShapeNet Part dataset.

Citation

If you find our work useful in your research, please consider citing:

@article{qi2016pointnet,
  title={PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation},
  author={Qi, Charles R and Su, Hao and Mo, Kaichun and Guibas, Leonidas J},
  journal={arXiv preprint arXiv:1612.00593},
  year={2016}
}

Installation

Install TensorFlow. You may also need to install h5py. The code has been tested with Python 2.7, TensorFlow 1.0.1, CUDA 8.0 and cuDNN 5.1 on Ubuntu 14.04.

If you are using PyTorch, you can find a third-party pytorch implementation here.

To install h5py for Python:

sudo apt-get install libhdf5-dev
sudo pip install h5py

Usage

To train a model to classify point clouds sampled from 3D shapes:

python train.py

Log files and network parameters will be saved to log folder in default. Point clouds of ModelNet40 models in HDF5 files will be automatically downloaded (416MB) to the data folder. Each point cloud contains 2048 points uniformly sampled from a shape surface. Each cloud is zero-mean and normalized into an unit sphere. There are also text files in data/modelnet40_ply_hdf5_2048 specifying the ids of shapes in h5 files.

To see HELP for the training script:

python train.py -h

We can use TensorBoard to view the network architecture and monitor the training progress.

tensorboard --logdir log

After the above training, we can evaluate the model and output some visualizations of the error cases.

python evaluate.py --visu

Point clouds that are wrongly classified will be saved to dump folder in default. We visualize the point cloud by rendering it into three-view images.

If you'd like to prepare your own data, you can refer to some helper functions in utils/data_prep_util.py for saving and loading HDF5 files.

Part Segmentation

To train a model for object part segmentation, firstly download the data:

cd part_seg
sh download_data.sh

The downloading script will download ShapeNetPart dataset (around 1.08GB) and our prepared HDF5 files (around 346MB).

Then you can run train.py and test.py in the part_seg folder for training and testing (computing mIoU for evaluation).

License

Our code is released under MIT License (see LICENSE file for details).

Selected Projects that Use PointNet

Owner
Charles R. Qi
AI Researcher. PhD from Stanford University. Focus: deep learning, computer vision and 3D.
Charles R. Qi
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022