Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Related tags

Deep LearningCIConv
Overview

Zero-Shot Domain Adaptation with a Physics Prior

[arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and Jan van Gemert.

This repository contains the PyTorch implementation of Color Invariant Convolutions and all experiments and datasets described in the paper.

Abstract

We explore the zero-shot setting for day-night domain adaptation. The traditional domain adaptation setting is to train on one domain and adapt to the target domain by exploiting unlabeled data samples from the test set. As gathering relevant test data is expensive and sometimes even impossible, we remove any reliance on test data imagery and instead exploit a visual inductive prior derived from physics-based reflection models for domain adaptation. We cast a number of color invariant edge detectors as trainable layers in a convolutional neural network and evaluate their robustness to illumination changes. We show that the color invariant layer reduces the day-night distribution shift in feature map activations throughout the network. We demonstrate improved performance for zero-shot day to night domain adaptation on both synthetic as well as natural datasets in various tasks, including classification, segmentation and place recognition.

Getting started

All code and experiments have been tested with PyTorch 1.7.0.

Create a local clone of this repository:

git clone https://github.com/Attila94/CIConv

The method directory contains the color invariant convolution (CIConv) layer, as well as custom ResNet and VGG models using the CIConv layer. To use the CIConv layer in your own architecture, simply copy ciconv2d.py to the desired directory and add it as a regular PyTorch layer as

from ciconv2d import CIConv2d
ciconv = CIConv2d('W', k=3, scale=0.0)

See resnet.py and vgg.py for examples.

Datasets

Shapenet Illuminants

[Download link]

Shapenet Illuminants is used in the synthetic classification experiment. The images are rendered from a subset of the ShapeNet dataset using the physically based renderer Mitsuba. The scene is illuminated by a point light modeled as a black-body radiator with temperatures ranging between [1900, 20000] K and an ambient light source. The training set contains 1,000 samples for each of the 10 object classes recorded under "normal" lighting conditions (T = 6500 K). Multiple test sets with 300 samples per class are rendered for a variety of light source intensities and colors.

shapenet_illuminants

Common Objects Day and Night

[Download link]

Common Objects Day and Night (CODaN) is a natural day-night image classification dataset. More information can be found on the separate Github repository: https://github.com/Attila94/CODaN.

codan

Experiments

1. Synthetic classification

  1. Download [link] and unpack the Shapenet Illuminants dataset.
  2. In your local CIConv clone navigate to experiments/1_synthetic_classification and run
python train.py --root 'path/to/shapenet_illuminants' --hflip --seed 0 --invariant 'W'

This will train a ResNet-18 with the 'W' color invariant from scratch and evaluate on all test sets.

shapenet_illuminants_results

Classification accuracy of ResNet-18 with various color invariants. RGB (not invariant) performance degrades when illumination conditions differ between train and test set, while color invariants remain more stable. W performs best overall.

2. CODaN classification

  1. Download the Common Objects Day and Night (CODaN) dataset from https://github.com/Attila94/CODaN.
  2. In your local CIConv clone navigate to experiments/2_codan_classification and run
python train.py --root 'path/to/codan' --invariant 'W' --scale 0. --hflip --jitter 0.3 --rr 20 --seed 0

This will train a ResNet-18 with the 'W' color invariant from scratch and evaluate on all test sets.

Selected results from the paper:

Method Day (% accuracy) Night (% accuracy)
Baseline 80.39 +- 0.38 48.31 +- 1.33
E 79.79 +- 0.40 49.95 +- 1.60
W 81.49 +- 0.49 59.67 +- 0.93
C 78.04 +- 1.08 53.44 +- 1.28
N 77.44 +- 0.00 52.03 +- 0.27
H 75.20 +- 0.56 50.52 +- 1.34

3. Semantic segmentation

  1. Download and unpack the following public datasets: Cityscapes, Nighttime Driving, Dark Zurich.

  2. In your local CIConv clone navigate to experiments/3_segmentation.

  3. Set the proper dataset locations in train.py.

  4. Run

    python train.py --hflip --rc --jitter 0.3 --scale 0.3 --batch-size 6 --pretrained --invariant 'W'

Selected results from the paper:

Method Nighttime Driving (mIoU) Dark Zurich (mIoU)
RefineNet [baseline] 34.1 30.6
W-RefineNet [ours] 41.6 34.5

4. Visual place recognition

  1. Setup conda environment

    conda create -n ciconv python=3.9 mamba -c conda-forge
    conda activate ciconv
    mamba install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 scikit-image -c pytorch
  2. Navigate to experiments/4_visual_place_recognition/cnnimageretrieval-pytorch/.

  3. Run

    git submodule update --init # download a fork of cnnimageretrieval-pytorch
    sh cirtorch/utils/setup_tests.sh # download datasets and pre-trained models 
    python3 -m cirtorch.examples.test --network-path data/networks/retrieval-SfM-120k_w_resnet101_gem/model.path.tar --multiscale '[1, 1/2**(1/2), 1/2]' --datasets '247tokyo1k' --whitening 'retrieval-SfM-120k'
  4. Use --network-path retrievalSfM120k-resnet101-gem to compare against the vanilla method (without using the color invariant trained ResNet101).

  5. Use --datasets 'gp_dl_nr' to test on the GardensPointWalking dataset.

Selected results from the paper:

Method Tokyo 24/7 (mAP)
ResNet101 GeM [baseline] 85.0
W-ResNet101 GeM [ours] 88.3

Citation

If you find this repository useful for your work, please cite as follows:

@article{lengyel2021zeroshot,
      title={Zero-Shot Domain Adaptation with a Physics Prior}, 
      author={Attila Lengyel and Sourav Garg and Michael Milford and Jan C. van Gemert},
      year={2021},
      eprint={2108.05137},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Attila Lengyel
PhD candidate @ TU Delft Computer Vision Lab.
Attila Lengyel
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022