Keras documentation, hosted live at keras.io

Related tags

Deep Learningkeras-io
Overview

Keras.io documentation generator

This repository hosts the code used to generate the keras.io website.

Generating a local copy of the website

pip install -r requirements.txt
cd scripts
python autogen.py make
python autogen.py serve

If you have Docker (you don't need the gpu version of Docker), you can run instead:

docker build -t keras-io . && docker run --rm -p 8000:8000 keras-io

It will take a while the first time because it's going to pull the image and the dependencies, but on the next times it'll be much faster.

Another way of testing using Docker is via our Makefile:

make container-test

This command will build a Docker image with a documentation server and run it.

Call for examples

Are you interested in submitting new examples for publication on keras.io? We welcome your contributions! Please read the information below about adding new code examples.

We are currently interested in the following examples.

Adding a new code example

Keras code examples are implemented as tutobooks.

A tutobook is a script available simultaneously as a notebook, as a Python file, and as a nicely-rendered webpage.

Its source-of-truth (for manual edition and version control) is its Python script form, but you can also create one by starting from a notebook and converting it with the command nb2py.

Text cells are stored in markdown-formatted comment blocks. the first line (starting with """) may optionally contain a special annotation, one of:

  • shell: execute this block while prefixing each line with !.
  • invisible: do not render this block.

The script form should start with a header with the following fields:

Title: (title)
Author: (could be `Authors`: as well, and may contain markdown links)
Date created: (date in yyyy/mm/dd format)
Last modified: (date in yyyy/mm/dd format)
Description: (one-line text description)

To see examples of tutobooks, you can check out any .py file in examples/ or guides/.

Creating a new example starting from a ipynb file

  1. Save the ipynb file to local disk.
  2. Convert the file to a tutobook by running: (assuming you are in the scripts/ directory)
python tutobooks.py nb2py path_to_your_nb.ipynb ../examples/vision/script_name.py

This will create the file examples/vision/script_name.py.

  1. Open it, fill in the headers, and generally edit it so that it looks nice.

NOTE THAT THE CONVERSION SCRIPT MAY MAKE MISTAKES IN ITS ATTEMPTS TO SHORTEN LINES. MAKE SURE TO PROOFREAD THE GENERATED .py IN FULL. Or alternatively, make sure to keep your lines reasonably-sized (<90 char) to start with, so that the script won't have to shorten them.

  1. Run python autogen.py add_example vision/script_name. This will generate an ipynb and markdown rendering of your example, creating files in examples/vision/ipynb, examples/vision/md, and examples/vision/img. Do not modify any of these files by hand; only the original Python script should ever be edited manually.
  2. Submit a PR adding examples/vision/script_name.py (only the .py, not the generated files). Get a review and approval.
  3. Once the PR is approved, add to the PR the files created by the add_example command. Then we will merge the PR.

Creating a new example starting from a Python script

  1. Format the script with black: black script_name.py
  2. Add tutobook header
  3. Put the script in the relevant subfolder of examples/ (e.g. examples/vision/script_name)
  4. Run python autogen.py add_example vision/script_name. This will generate an ipynb and markdown rendering of your example, creating files in examples/vision/ipynb, examples/vision/md, and examples/vision/img. Do not modify any of these files by hand; only the original Python script should ever be edited manually.
  5. Submit a PR adding examples/vision/script_name.py (only the .py, not the generated files). Get a review and approval.
  6. Once the PR is approved, add to the PR the files created by the add_example command. Then we will merge the PR.

Previewing a new example

You can locally preview what the example looks like by running:

cd scripts
python autogen.py add_example vision/script_name

(Assuming the tutobook file is examples/vision/script_name.py.)

NOTE THAT THIS COMMAND WILL ERROR OUT IF ANY CELLS TAKES TOO LONG TO EXECUTE. In that case, make your code lighter/faster. Remember that examples are meant to demonstrate workflows, not train state-of-the-art models. They should stay very lightweight.

Then serving the website:

python autogen.py make
python autogen.py serve

And navigating to 0.0.0.0:8000/examples.

Read-only autogenerated files

The contents of the following folders should not be modified by hand:

  • site/*
  • sources/*
  • templates/examples/*
  • templates/guides/*
  • examples/*/md/*, examples/*/ipynb/*, examples/*/img/*
  • guides/md/*, guides/ipynb/*, guides/img/*

Modifiable files

These are the only files that should be edited by hand:

  • templates/*.md, with the exception of templates/examples/* and templates/guides/*
  • examples/*/*.py
  • guides/*.py
  • theme/*
  • scripts/*.py
Owner
Keras
Deep Learning for humans
Keras
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023