Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Overview

Dense Unsupervised Learning for Video Segmentation

License Framework

This repository contains the official implementation of our paper:

Dense Unsupervised Learning for Video Segmentation
Nikita Araslanov, Simone Schaub-Mayer and Stefan Roth
To appear at NeurIPS*2021. [paper] [supp] [talk] [example results] [arXiv]

drawing

We efficiently learn spatio-temporal correspondences
without any supervision, and achieve state-of-the-art
accuracy of video object segmentation.

Contact: Nikita Araslanov fname.lname (at) visinf.tu-darmstadt.de


Installation

Requirements. To reproduce our results, we recommend Python >=3.6, PyTorch >=1.4, CUDA >=10.0. At least one Titan X GPUs (12GB) or equivalent is required. The code was primarily developed under PyTorch 1.8 on a single A100 GPU.

The following steps will set up a local copy of the repository.

  1. Create conda environment:
conda create --name dense-ulearn-vos
source activate dense-ulearn-vos
  1. Install PyTorch >=1.4 (see PyTorch instructions). For example on Linux, run:
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  1. Install the dependencies:
pip install -r requirements.txt
  1. Download the data:
Dataset Website Target directory with video sequences
YouTube-VOS Link data/ytvos/train/JPEGImages/
OxUvA Link data/OxUvA/images/dev/
TrackingNet Link data/tracking/train/jpegs/
Kinetics-400 Link data/kinetics400/video_jpeg/train/

The last column in this table specifies a path to subdirectories (relative to the project root) containing images of video frames. You can obviously use a different path structure. In this case, you will need to adjust the paths in data/filelists/ for every dataset accordingly.

  1. Download filelists:
cd data/filelists
bash download.sh

This will download lists of training and validation paths for all datasets.

Training

We following bash script will train a ResNet-18 model from scratch on one of the four supported datasets (see above):

bash ./launch/train.sh [ytvos|oxuva|track|kinetics]

We also provide our final models for download.

Dataset Mean J&F (DAVIS-2017) Link MD5
OxUvA 65.3 oxuva_e430_res4.pth (132M) af541[...]d09b3
YouTube-VOS 69.3 ytvos_e060_res4.pth (132M) c3ae3[...]55faf
TrackingNet 69.4 trackingnet_e088_res4.pth (88M) 3e7e9[...]95fa9
Kinetics-400 68.7 kinetics_e026_res4.pth (88M) 086db[...]a7d98

Inference and evaluation

Inference

To run the inference use launch/infer_vos.sh:

bash ./launch/infer_vos.sh [davis|ytvos]

The first argument selects the validation dataset to use (davis for DAVIS-2017; ytvos for YouTube-VOS). The bash variables declared in the script further help to set up the paths for reading the data and the pre-trained models as well as the output directory:

  • EXP, RUN_ID and SNAPSHOT determine the pre-trained model to load.
  • VER specifies a suffix for the output directory (in case you would like to experiment with different configurations for label propagation). Please, refer to launch/infer_vos.sh for their usage.

The inference script will create two directories with the result: [res3|res4|key]_vos and [res3|res4|key]_vis, where the prefix corresponds to the codename of the output CNN layer used in the evaluation (selected in infer_vos.sh using KEY variable). The vos-directory contains the segmentation result ready for evaluation; the vis-directory produces the results for visualisation purposes. You can optionally disable generating the visualisation by setting VERBOSE=False in infer_vos.py.

Evaluation: DAVIS-2017

Please use the official evaluation package. Install the repository, then simply run:

python evaluation_method.py --task semi-supervised --davis_path data/davis2017 --results_path <path-to-vos-directory>

Evaluation: YouTube-VOS 2018

Please use the official CodaLab evaluation server. To create the submission, rename the vos-directory to Annotations and compress it to Annotations.zip for uploading.

Acknowledgements

We thank PyTorch contributors and Allan Jabri for releasing their implementation of the label propagation.

Citation

We hope you find our work useful. If you would like to acknowledge it in your project, please use the following citation:

@inproceedings{Araslanov:2021:DUL,
  author    = {Araslanov, Nikita and Simone Schaub-Mayer and Roth, Stefan},
  title     = {Dense Unsupervised Learning for Video Segmentation},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  volume    = {34},
  year = {2021}
}
Owner
Visual Inference Lab @TU Darmstadt
Visual Inference Lab @TU Darmstadt
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023