Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

Overview

STAR-pytorch

Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

CVF (pdf)

STAR-DCE

The pytorch implementation of low light enhancement with STAR on Adobe-MIT FiveK dataset. You can find it in STAR-DCE directory. Here we adopt the pipleline of Zero-DCE ( paper | code ), just replacing the CNN backbone with STAR. In Zero-DCE, for each image the network will regress a group of curves, which will then applied on the source image iteratively. You can find more details in the original repo Zero-DCE.

Requirements

  • numpy
  • einops
  • torch
  • torchvision
  • opencv

Datesets

We provide download links for Adobe-MIT FiveK datasets we used ( train | test ). Please note that we adopt the test set splited by DeepUPE for fair comparison.

Training DCE models

To train a original STAR-DCE model,

cd STAR-DCE
python train_dce.py 
  --lowlight_images_path "dir-to-your-training-set" \
  --parallel True \
  --snapshots_folder snapshots/STAR-ori \
  --lr 0.001 \
  --num_epochs 100 \
  --lr_type cos \
  --train_batch_size 32 \
  --model STAR-DCE-Ori \
  --snapshot_iter 10 \
  --num_workers 32 \

To train the baseline CNN-based DCE-Net (w\ or w\o Pooling),

cd STAR-DCE
python train_dce.py 
  --lowlight_images_path "dir-to-your-training-set" \
  --parallel True \
  --snapshots_folder snapshots/DCE \
  --lr 0.001 \
  --num_epochs 100 \
  --lr_type cos \
  --train_batch_size 32 \
  --model DCE-Net \
  --snapshot_iter 10 \
  --num_workers 32 \

or

cd STAR-DCE
python train_dce.py 
  --lowlight_images_path "dir-to-your-training-set" \
  --parallel True \
  --snapshots_folder snapshots/DCE-Pool \
  --lr 0.001 \
  --num_epochs 100 \
  --lr_type cos \
  --train_batch_size 32 \
  --model DCE-Net-Pool \
  --snapshot_iter 10 \
  --num_workers 32 \

Evaluation of trained models

To evaluated the STAR-DCE model you trained,

cd STAR-DCE
  python test_dce.py \
  --lowlight_images_path  "dir-to-your-test-set" \
  --parallel True \
  --snapshots_folder snapshots_test/STAR-DCE \
  --val_batch_size 1 \
  --pretrain_dir snapshots/STAR-ori/Epoch_best.pth \
  --model STAR-DCE-Ori \

To evaluated the DCE-Net model you trained,

cd STAR-DCE
  python test_dce.py \
  --lowlight_images_path  "dir-to-your-test-set" \
  --parallel True \
  --snapshots_folder snapshots_test/DCE \
  --val_batch_size 1 \
  --pretrain_dir snapshots/DCE/Epoch_best.pth \
  --model DCE-Net \

Citation

If this code helps your research, please cite our paper :)

@inproceedings{zhang2021star,
  title={STAR: A Structure-Aware Lightweight Transformer for Real-Time Image Enhancement},
  author={Zhang, Zhaoyang and Jiang, Yitong and Jiang, Jun and Wang, Xiaogang and Luo, Ping and Gu, Jinwei},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4106--4115},
  year={2021}
}
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
Fang Zhonghao 13 Nov 19, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022