Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Related tags

Deep Learningle_sde
Overview

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

This repo contains official code for the NeurIPS 2021 paper Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations by Jiayao Zhang, Hua Wang, Weijie J. Su.

Discussions welcome, please submit via Discussions. You can also read the reviews on OpenReview.

@misc{zhang2021imitating,
      title={Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations}, 
      author={Jiayao Zhang and Hua Wang and Weijie J. Su},
      year={2021},
      eprint={2110.05960},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Reproducing Experiments

Dependencies

We use Python 3.8 and pytorch for training neural nets, please use pip install -r requirements.txt (potentially in a virtual environment) to install dependencies.

Datasets

We use a dataset of geometric shapes (GeoMNIST) we constructed as well as CIFAR-10. GeoMNIST is lightweighted and will be generated when simulation runs; CIFAR-10 will be downloaded from torchvision.

Code Structure

After instsalling the dependencies, one may navigate through the two Jupyter notebooks for running experiments and producing plots and figures. Below we outline the code structure.

.
├── LICENSE                         # code license
├── README.md                       # this file
├── LE-SDE Data Analysis.ipynb      # reproducing plots and figures
├── LE-SDE Experiments.ipynb        # reproducing experiments
└── src                         # source code
    ├── data_analyzer.py            # processing experiment data
    ├── datasets.py                 # generating and loading datasets
    ├── models.py                   # definition of neural net models
    ├── plotter.py                  # generating plots and figures
    └── utils.py                    # utilities, including training pipelines
└── exp_data                    # experiment data
    ├── *.csv                       # dataframes from neural net training
    └── *.npy                       # numpy.ndarray storing LE-ODE simulations

More info regarding npy files can be found in the numpy documentation.

Reproducing Figures

Experiment Data

Although all simulations can be run on your machine, it is quite time-consuming. Data from our experiments can be downloaded from the following anonymous Dropbox links:

After downloading those tarballs, extract them into ./exp_data (or change the EXP_DIR variable in the notebooks accordingly).

Plotter

Once experiment data are ready, simply follow LE-SDE Data Analysis.ipynb for reproducing all figures.

Owner
Jiayao Zhang
Ph.D. Student at UPenn
Jiayao Zhang
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022