Easy to use Audio Tagging in PyTorch

Overview

Audio Classification, Tagging & Sound Event Detection in PyTorch

Progress:

  • Fine-tune on audio classification
  • Fine-tune on audio tagging
  • Fine-tune on sound event detection
  • Add tagging metrics
  • Add Tutorial
  • Add Augmentation Notebook
  • Add more schedulers
  • Add FSDKaggle2019 dataset
  • Add MTT dataset
  • Add DESED

Model Zoo

AudioSet Pretrained Models
Model Task mAP
(%)
Sample Rate
(kHz)
Window Length Num Mels Fmax Weights
CNN14 Tagging 43.1 32 1024 64 14k download
CNN14_16k Tagging 43.8 16 512 64 8k download
CNN14_DecisionLevelMax SED 38.5 32 1024 64 14k download

Note: These models will be used as a pretrained model in the fine-tuning tasks below. Check out audioset-tagging-cnn, if you want to train on AudioSet dataset.

Fine-tuned Classification Models
Model Dataset Accuracy
(%)
Sample Rate
(kHz)
Weights
CNN14 ESC50 (Fold-5) 95.75 32 download
CNN14 FSDKaggle2018 (test) 93.56 32 download
CNN14 SpeechCommandsv1 (val/test) 96.60/96.77 32 download
Fine-tuned Tagging Models
Model Dataset mAP(%) AUC d-prime Sample Rate
(kHz)
Config Weights
CNN14 FSDKaggle2019 - - - 32 - -
Fine-tuned SED Models
Model Dataset F1 Sample Rate
(kHz)
Config Weights
CNN14_DecisionLevelMax DESED - 32 - -

Supported Datasets

Dataset Task Classes Train Val Test Audio Length Audio Spec Size
ESC-50 Classification 50 2,000 5 folds - 5s 44.1kHz, mono 600MB
UrbanSound8k Classification 10 8,732 10 folds - <=4s Vary 5.6GB
FSDKaggle2018 Classification 41 9,473 - 1,600 300ms~30s 44.1kHz, mono 4.6GB
SpeechCommandsv1 Classification 30 51,088 6,798 6,835 <=1s 16kHz, mono 1.4GB
SpeechCommandsv2 Classification 35 84,843 9,981 11,005 <=1s 16kHz, mono 2.3GB
FSDKaggle2019* Tagging 80 4,970+19,815 - 4,481 300ms~30s 44.1kHz, mono 24GB
MTT* Tagging 50 19,000 - - - - 3GB
DESED* SED 10 - - - 10 - -

Notes: * datasets are not available yet. Classification dataset are treated as multi-class/single-label classification and tagging and sed datasets are treated as multi-label classification.

Dataset Structure (click to expand)

Download the dataset and prepare it into the following structure.

datasets
|__ ESC50
    |__ audio

|__ Urbansound8k
    |__ audio

|__ FSDKaggle2018
    |__ audio_train
    |__ audio_test
    |__ FSDKaggle2018.meta
        |__ train_post_competition.csv
        |__ test_post_competition_scoring_clips.csv

|__ SpeechCommandsv1/v2
    |__ bed
    |__ bird
    |__ ...
    |__ testing_list.txt
    |__ validation_list.txt


Augmentations (click to expand)

Currently, the following augmentations are supported. More will be added in the future. You can test the effects of augmentations with this notebook

WaveForm Augmentations:

  • MixUp
  • Background Noise
  • Gaussian Noise
  • Fade In/Out
  • Volume
  • CutMix

Spectrogram Augmentations:

  • Time Masking
  • Frequency Masking
  • Filter Augmentation

Usage

Requirements (click to expand)
  • python >= 3.6
  • pytorch >= 1.8.1
  • torchaudio >= 0.8.1

Other requirements can be installed with pip install -r requirements.txt.


Configuration (click to expand)
  • Create a configuration file in configs. Sample configuration for ESC50 dataset can be found here.
  • Copy the contents of this and then edit the fields you think if it is needed.
  • This configuration file is needed for all of training, evaluation and prediction scripts.

Training (click to expand)

To train with a single GPU:

$ python tools/train.py --cfg configs/CONFIG_FILE_NAME.yaml

To train with multiple gpus, set DDP field in config file to true and run as follows:

$ python -m torch.distributed.launch --nproc_per_node=2 --use_env tools/train.py --cfg configs/CONFIG_FILE_NAME.yaml

Evaluation (click to expand)

Make sure to set MODEL_PATH of the configuration file to your trained model directory.

$ python tools/val.py --cfg configs/CONFIG_FILE.yaml

Audio Classification/Tagging Inference
  • Set MODEL_PATH of the configuration file to your model's trained weights.
  • Change the dataset name in DATASET >> NAME as your trained model's dataset.
  • Set the testing audio file path in TEST >> FILE.
  • Run the following command.
$ python tools/infer.py --cfg configs/CONFIG_FILE.yaml

## for example
$ python tools/infer.py --cfg configs/audioset.yaml

You will get an output similar to this:

Class                     Confidence
----------------------  ------------
Speech                     0.897762
Telephone bell ringing     0.752206
Telephone                  0.219329
Inside, small room         0.20761
Music                      0.0770325

Sound Event Detection Inference
  • Set MODEL_PATH of the configuration file to your model's trained weights.
  • Change the dataset name in DATASET >> NAME as your trained model's dataset.
  • Set the testing audio file path in TEST >> FILE.
  • Run the following command.
$ python tools/sed_infer.py --cfg configs/CONFIG_FILE.yaml

## for example
$ python tools/sed_infer.py --cfg configs/audioset_sed.yaml

You will get an output similar to this:

Class                     Start    End
----------------------  -------  -----
Speech                      2.2    7
Telephone bell ringing      0      2.5

The following plot will also be shown, if you set PLOT to true:

sed_result


References (click to expand)

Citations (click to expand)
@misc{kong2020panns,
      title={PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition}, 
      author={Qiuqiang Kong and Yin Cao and Turab Iqbal and Yuxuan Wang and Wenwu Wang and Mark D. Plumbley},
      year={2020},
      eprint={1912.10211},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

@misc{gong2021ast,
      title={AST: Audio Spectrogram Transformer}, 
      author={Yuan Gong and Yu-An Chung and James Glass},
      year={2021},
      eprint={2104.01778},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

@misc{nam2021heavily,
      title={Heavily Augmented Sound Event Detection utilizing Weak Predictions}, 
      author={Hyeonuk Nam and Byeong-Yun Ko and Gyeong-Tae Lee and Seong-Hu Kim and Won-Ho Jung and Sang-Min Choi and Yong-Hwa Park},
      year={2021},
      eprint={2107.03649},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
You might also like...
TorchMetrics is a collection of 25+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

Fast image augmentation library and easy to use wrapper around other libraries. Documentation:  https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

Fast, flexible and easy to use probabilistic modelling in Python.
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A fast and easy to use, moddable, Python based Minecraft server!
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

Releases(v0.2.0)
  • v0.2.0(Aug 17, 2021)

    This release includes the following:

    • Fine-tuned on ESC50, FSDKaggle2018, SpeechCommandsv1
    • Add waveform augmentations
    • Add spectrogram augmentations
    • Add augmentation testing notebook
    • Add tagging metrics
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Aug 13, 2021)

Owner
sithu3
AI Developer
sithu3
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023