Light-Head R-CNN

Overview

Light-head R-CNN

Introduction

We release code for Light-Head R-CNN.

This is my best practice for my research.

This repo is organized as follows:

light_head_rcnn/
    |->experiments
    |    |->user
    |    |    |->your_models
    |->lib       
    |->tools
    |->output

Main Results

  1. We train on COCO trainval which includes 80k training and 35k validation images. Test on minival which is a 5k subset in validation datasets. Noticing test-dev should be little higher than minival.
  2. We provide some crutial ablation experiments details, and it is easy to diff the difference.
  3. We share our training logs in GoogleDrive output folder, which contains dump models, training loss and speed of each steps. (experiments are done on 8 titan xp, and 2batches/per_gpu. Training should be within one day.)
  4. Because the limitation of the time, extra experiments are comming soon.
Model Name [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
R-FCN, ResNet-v1-101
our reproduce baseline
35.5 54.3 33.8 12.8 34.9 46.1
Light-Head R-CNN
ResNet-v1-101
38.2 60.9 41.0 20.9 42.2 52.8
Light-Head,ResNet-v1-101
+align pooling
39.3 61.0 42.4 22.2 43.8 53.2
Light-Head,ResNet-v1-101
+align pooling + nms0.5
40.0 62.1 42.9 22.5 44.6 54.0

Experiments path related to model:

experiments/lizeming/rfcn_reproduce.ori_res101.coco.baseline
experiments/lizeming/light_head_rcnn.ori_res101.coco 
experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign
experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign

Requirements

  1. tensorflow-gpu==1.5.0 (We only test on tensorflow 1.5.0, early tensorflow is not supported because of our gpu nms implementation)
  2. python3. We recommend using Anaconda as it already includes many common packages. (python2 is not tested)
  3. Python packages might missing. pls fix it according to the error message.

Installation, Prepare data, Testing, Training

Installation

  1. Clone the Light-Head R-CNN repository, and we'll call the directory that you cloned Light-Head R-CNNN as ${lighthead_ROOT}.
git clone https://github.com/zengarden/light_head_rcnn
  1. Compiling
cd ${lighthead_ROOT}/lib;
bash make.sh

Make sure all of your compiling is successful. It may arise some errors, it is useful to find some common compile errors in FAQ

  1. Create log dump directory, data directory.
cd ${lighthead_ROOT};
mkdir output
mkdir data

Prepare data

data should be organized as follows:

data/
    |->imagenet_weights/res101.ckpt
    |->MSCOCO
    |    |->odformat
    |    |->instances_xxx.json
    |    |train2014
    |    |val2014

Download res101 basemodel:

wget -v http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz
tar -xzvf resnet_v1_101_2016_08_28.tar.gz
mv resnet_v1_101.ckpt res101.ckpt

We transfer instances_xxx.json to odformat(object detection format), each line in odformat is an annotation(json) for one image. Our transformed odformat is shared in GoogleDrive odformat.zip .

Testing

  1. Using -d to assign gpu_id for testing. (e.g. -d 0,1,2,3 or -d 0-3 )
  2. Using -s to visualize the results.
  3. Using '-se' to specify start_epoch for testing.

We share our experiments output(logs) folder in GoogleDrive. Download it and place it to ${lighthead_ROOT}, then test our release model.

e.g.

cd experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign
python3 test.py -d 0-7 -se 26

Training

We provide common used train.py in tools, which can be linked to experiments folder.

e.g.

cd experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign
python3 config.py -tool
cp tools/train.py .
python3 train.py -d 0-7

Features

This repo is designed be fast and simple for research. There are still some can be improved: anchor_target and proposal_target layer are tf.py_func, which means it will run on cpu.

Disclaimer

This is an implementation for Light-Head R-CNN, it is worth noting that:

  • The original implementation is based on our internal Platform used in Megvii. There are slight differences in the final accuracy and running time due to the plenty details in platform switch.
  • The code is tested on a server with 8 Pascal Titian XP gpu, 188.00 GB memory, and 40 core cpu.
  • We rewrite a faster nms in our inner platform, while hear we use tf.nms instead.

Citing Light-Head R-CNN

If you find Light-Head R-CNN is useful in your research, pls consider citing:

@article{li2017light,
  title={Light-Head R-CNN: In Defense of Two-Stage Object Detector},
  author={Li, Zeming and Peng, Chao and Yu, Gang and Zhang, Xiangyu and Deng, Yangdong and Sun, Jian},
  journal={arXiv preprint arXiv:1711.07264},
  year={2017}
}

FAQ

  • fatal error: cuda/cuda_config.h: No such file or directory

First, find where is cuda_config.h.

e.g.

find /usr/local/lib/ | grep cuda_config.h

then export your cpath, like:

export CPATH=$CPATH:/usr/local/lib/python3.5/dist-packages/external/local_config_cuda/cuda/
Owner
jemmy li
jemmy li
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022