Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Overview

Face Identity Disentanglement via Latent Space Mapping

Description

Official Implementation of the paper Face Identity Disentanglement via Latent Space Mapping for both training and evaluation.

Face Identity Disentanglement via Latent Space Mapping
Yotam Nitzan1, Amit Bermano1, Yangyan Li2, Daniel Cohen-Or1
1Tel-Aviv University, 2Alibaba
https://arxiv.org/abs/2005.07728

Abstract: Learning disentangled representations of data is a fundamental problem in artificial intelligence. Specifically, disentangled latent representations allow generative models to control and compose the disentangled factors in the synthesis process. Current methods, however, require extensive supervision and training, or instead, noticeably compromise quality. In this paper, we present a method that learns how to represent data in a disentangled way, with minimal supervision, manifested solely using available pre-trained networks. Our key insight is to decouple the processes of disentanglement and synthesis, by employing a leading pre-trained unconditional image generator, such as StyleGAN. By learning to map into its latent space, we leverage both its state-of-the-art quality, and its rich and expressive latent space, without the burden of training it. We demonstrate our approach on the complex and high dimensional domain of human heads. We evaluate our method qualitatively and quantitatively, and exhibit its success with de-identification operations and with temporal identity coherency in image sequences. Through extensive experimentation, we show that our method successfully disentangles identity from other facial attributes, surpassing existing methods, even though they require more training and supervision.

Setup

To setup everything you need check out the setup instructions.

Training

Preparing the Dataset

The dataset is comprised of StyleGAN-generated images and W latent codes, both are generated from a single StyleGAN model.

We also use real images from FFHQ to evaluate quality at test time.

The dataset is assumed to be in the following structure:

Path Description
base directory Directory for all datasets
├  real FFHQ image dataset
├  dataset_N dataset for resolution NxN
│  ├  images images generated by StyleGAN
│  └  ws W latent codes generated by StyleGAN

To generate the dataset_N directory, run:

cd utils\
python generate_fake_data.py \ 
    --resolution N \
    --batch_size BATCH_SIZE \
    --output_path OUTPUT_PATH \
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --num_images NUM_IMAGES \
    --gpu GPU

It will generate an image dataset in similar format to FFHQ.

Start training

To train the model as done in the paper

python main.py
    NAME
    --resolution N
    --pretrained_models_path PRETRAINED_MODELS_PATH
    --dataset BASE_DATASET_DIR
    --batch_size BATCH_SIZE
    --cross_frequency 3
    --train_data_size 70000
    --results_dir RESULTS_DIR        

Please run python main.py -h for more details.

Inference

For convenience, there are a few inference functions - each serving a different use case. The functions are resolved using the name of the function.

All possible combinations in dirs

Input data: Two directories, one identity inputs and another for attribute inputs.
Runs over all N*M combinations in two directories.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --id_dir DIR_OF_IMAGES_FOR_ID \
    --attr_dir DIR_OF_IMAGES_FOR_ATTR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func infer_on_dirs

Paired data

Input data: Two directories, one identity inputs and another for attribute inputs.
The two directories are assumed to be paired. Inference runs on images with the same names.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --id_dir DIR_OF_IMAGES_FOR_ID \
    --attr_dir DIR_OF_IMAGES_FOR_ATTR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func infer_pairs

Disentangled interpolation

Interpolating attributes

Interpolating identity

Input data: A directory with any number of subdirectories. In each subdir, there are three images. All images should have exactly one of attr or id in their name. If there are two attr images and one id image, it will interpolate attribute. If there is one attr images and two id images, it will interpolate identity.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --input_dir PARENT_DIR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func interpolate

Checkpoints

Our pretrained 256x256 checkpoint is also available.

Citation

If you use this code for your research, please cite our paper using:

@article{Nitzan2020FaceID,
  title={Face identity disentanglement via latent space mapping},
  author={Yotam Nitzan and A. Bermano and Yangyan Li and D. Cohen-Or},
  journal={ACM Transactions on Graphics (TOG)},
  year={2020},
  volume={39},
  pages={1 - 14}
}
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022