Python package for visualizing the loss landscape of parameterized quantum algorithms.

Related tags

Deep Learningorqviz
Overview

Image

orqviz

A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc.

orqviz provides a collection of tools which quantum researchers and enthusiasts alike can use for their simulations. It works with any framework for running quantum circuits, for example qiskit, cirq, pennylane, and Orquestra. The package contains functions to generate data, as well as a range of flexible plotting and helper functions. orqviz is light-weight and has very few dependencies.

Getting started

In doc/examples/ we provide a range of Jupyter notebook examples for orqviz. We have four Jupyter notebooks with tutorials for how to get started with any quantum circuit simulation framework you might use. You will find examples with qiskit, cirq, pennylane and Zapata's Orquestra library. The tutorials are not exhaustive, but they do provide a full story that you can follow along.

In this notebook we have the Sombrero example that we showcase in our paper. We also have an advanced example notebook which provides a thorough demonstration of the flexibility of the orqviz package.

We recently published a paper on arXiv where we review the tools available with orqviz:
ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum Algorithms

Installation

You can install our package using the following command:

pip install orqviz

Alternatively you can build the package from source. This is especially helpful if you would like to contribute to orqviz

git clone https://github.com/zapatacomputing/orqviz.git
cd orqviz
pip install -e ./

Examples

import orqviz
import numpy as np

np.random.seed(42)

def loss_function(pars):
    return np.sum(np.cos(pars))**2 + np.sum(np.sin(30*pars))**2

n_params = 42
params = np.random.uniform(-np.pi, np.pi, size=n_params)
dir1 = orqviz.geometric.get_random_normal_vector(n_params)
dir2 = orqviz.geometric.get_random_orthonormal_vector(dir1)

scan2D_result = orqviz.scans.perform_2D_scan(params, loss_function,
                                direction_x=dir1, direction_y=dir2,
                                n_steps_x=100)
orqviz.scans.plot_2D_scan_result(scan2D_result)

This code results in the following plot:

Image

Authors

The leading developer of this package is Manuel Rudolph at Zapata Computing.
For questions related to the visualization techniques, contact Manuel via [email protected] .

The leading software developer of this package is Michał Stęchły at Zapata Computing.
For questions related to technicalities of the package, contact Michał via [email protected] .

Thank you to Sukin Sim and Luis Serrano from Zapata Computing for their contributions to the tutorials.

You can also contact us or ask general questions using GitHub Discussions.

For more specific code issues, bug fixes, etc. please open a GitHub issue in the orqviz repository.

If you are doing research using orqviz, please cite our paper:

ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum Algorithms

How to contribute

Please see our Contribution Guidelines.

Comments
  • Use transpile to build circuit only once

    Use transpile to build circuit only once

    Despite being wrapped up in a lambda function, the get_circuit function is actually still called for every function evaluation during plot generation or optimization, and hence the circuit is rebuilt each time. This rather defeats the concept of late binding of the parameter values. The PR uses a slightly different approach using the transpile function. The code is arguably more transparent than using the lambda function wrapper. Evaluation is faster now, but for this simple case rarely more than 10%. One downside, the circuit cannot be plotted anymore in a simple way.

    opened by RonMeiburg 11
  • ci: add step with Pythonic cruft cleanup

    ci: add step with Pythonic cruft cleanup

    Apparently, issues that we had with mypy stem from Github Actions caching some (?) directories (thanks @alexjuda for pointing this out!). This PR adds a cleaning step (taken from z-quantum-actions) that deletes potentially conflicting directories.

    opened by dexter2206 1
  • Clean notebooks

    Clean notebooks

    These are the once-run versions of the cirq and qiskit notebooks derived from the 'simplified qiskit get_circuit() return' commit from the main branch. I hope this works for you. If not, then I apologize, When it comes to git I still suffer from sas every now and then.

    opened by RonMeiburg 1
  • Loss function clarity

    Loss function clarity

    Goals of this draft PR:

    • Allow parameters to be any np.ndarray rather than strictly a 1D np.ndarray
    • Improve docstrings for what we define as a loss function
    • Improve README to specify what we define as a loss function, and how to wrap their loss function with functools.partial
    • Alternatively, allow loss_function_kwargs in the scanning functions that we pass to the loss_function with more than one argument.
    opened by MSRudolph 1
  • Utilize tqdm progress bar when verbose=True during scans.

    Utilize tqdm progress bar when verbose=True during scans.

    Is your feature request related to a problem? Please describe. We should replace the print calls when verbose=True in scans with tqdm from the tqdm library. Alternatively, we make it the default and find a way to mute the library's prints.

    Describe the solution you'd like

    verbose = True  # or False
    for it in tqdm(range(n_iters), disable = not verbose):
       ...  # run scans
    

    Additional context Our verbosity options are currently very rudimentary and tqdm is one of the most used Python libraries.

    opened by MSRudolph 2
  • This repo should contain Issues for how people can contribute

    This repo should contain Issues for how people can contribute

    Is your feature request related to a problem? Please describe. Currently, when people enter the orqviz GitHub repository with the intent to contribute, there are no open Issues and not many PRs. They will not know what might be low-hanging fruit to contribute.

    Describe the solution you'd like We (orqviz developers) should open Issues which are connected to how people can concretely contribute. For example, we could provide links to existing tutorials which we believe can be readily enhanced with our visualization techniques. In such cases, potential contributors could work on such enhancements and reach out to the authors of the original tutorials. Similarly, we can elaborate on future visualization techniques which we could experiment with. This may be done by external contributors.

    opened by MSRudolph 0
Releases(v0.3.0)
  • v0.3.0(Aug 19, 2022)

    What's Changed

    • ci: add step with Pythonic cruft cleanup by @dexter2206 in https://github.com/zapatacomputing/orqviz/pull/43
    • Update main by @mstechly in https://github.com/zapatacomputing/orqviz/pull/44
    • Fourier transform by @laurgao in https://github.com/zapatacomputing/orqviz/pull/45

    Full Changelog: https://github.com/zapatacomputing/orqviz/compare/v0.2.0...v0.3.0

    Source code(tar.gz)
    Source code(zip)
    orqviz-0.3.0-py3-none-any.whl(38.09 KB)
  • v0.2.0(Feb 8, 2022)

    New features:

    • orqviz now doesn't require parameters to be 1D vectors, they can be ND arrays instead
    • We introduced LossFunctionWrapper as a utility tool that helps with changing arbitrary python functions into orqviz-compatible loss functions.

    Minor changes:

    • Improvements in notebook examples
    • Improvements in readme and contribution guidelines
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Nov 9, 2021)

    What's Changed

    • Fixed classifiers in the setup.cfg
    • Minor fixes in in README
    • Relax dependency versions

    Full Changelog: https://github.com/zapatacomputing/orqviz/compare/v0.1.0...v0.1.1

    Source code(tar.gz)
    Source code(zip)
Owner
Zapata Computing, Inc.
Zapata Computing, Inc.
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022