FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

Related tags

Deep Learningfigaro
Overview

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann

Getting started

Prerequisites:

  • Python 3.9
  • Conda

Setup

  1. Clone this repository to your disk
  2. Install required packages (see requirements.txt). With Conda:
conda create --name figaro python=3.9
conda activate figaro
pip install -r requirements.txt

Preparing the Data

To train models and to generate new samples, we use the Lakh MIDI dataset (altough any collection of MIDI files can be used).

  1. Download (size: 1.6GB) and extract the archive file:
wget http://hog.ee.columbia.edu/craffel/lmd/lmd_full.tar.gz
tar -xzf lmd_full.tar.gz
  1. You may wish to remove the archive file now: rm lmd_full.tar.gz

Download Pre-Trained Models

If you don't wish to train your own models, you can download our pre-trained models.

  1. Download (size: 2.3GB) and extract the archive file:
wget -O checkpoints.zip https://polybox.ethz.ch/index.php/s/a0HUHzKuPPefWkW/download
unzip checkpoints.zip
  1. You may wish to remove the archive file now: rm checkpoints.zip

Training

Training arguments such as model type, batch size, model params are passed to the training scripts via environment variables.

Available model types are:

  • vq-vae: VQ-VAE model used for the learned desription
  • figaro: FIGARO with both the expert and learned description
  • figaro-expert: FIGARO with only the expert description
  • figaro-learned: FIGARO with only the learned description
  • figaro-no-inst: FIGARO (expert) without instruments
  • figaro-no-chord: FIGARO (expert) without chords
  • figaro-no-meta: FIGARO (expert) without style (meta) information
  • baseline: Unconditional decoder-only baseline following Huang et al. (2018)

Example invocation of the training script is given by the following command:

MODEL=figaro-expert python src/train.py

For models using the learned description (figaro and figaro-learned), a pre-trained VQ-VAE checkpoint needs to be provided as well:

MODEL=figaro VAE_CHECKPOINT=./checkpoints/vq-vae.ckpt python src/train.py

Generation

To generate samples, make sure you have a trained checkpoint prepared (either download one or train it yourself). For this script, make sure that the dataset is prepared according to Preparing the Data. This is needed to extract descriptions, based on which new samples can be generated.

An example invocation of the generation script is given by the following command:

MODEL=figaro-expert CHECKPOINT=./checkpoints/figaro-expert.ckpt python src/generate.py

For models using the learned description (figaro and figaro-learned), a pre-trained VQ-VAE checkpoint needs to be provided as well:

MODEL=figaro CHECKPOINT=./checkpoints/figaro.ckpt VAE_CHECKPOINT=./checkpoints/vq-vae.ckpt python src/generate.py

Evaluation

We provide the evaluation scripts used to calculate the desription metrics on some set of generated samples. Refer to the previous section for how to generate samples yourself.

Example usage:

SAMPLE_DIR=./samples/figaro-expert python src/evaluate.py

Parameters

The following environment variables are available for controlling hyperparameters beyond their default value.

Training (train.py)

Model

Variable Description Default value
MODEL Model architecture to be trained
D_MODEL Hidden size of the model 512
CONTEXT_SIZE Number of tokens in the context to be passed to the auto-encoder 256
D_LATENT [VQ-VAE] Dimensionality of the latent space 1024
N_CODES [VQ-VAE] Codebook size 2048
N_GROUPS [VQ-VAE] Number of groups to split the latent vector into before discretization 16

Optimization

Variable Description Default value
EPOCHS Max. number of training epochs 16
MAX_TRAINING_STEPS Max. number of training iterations 100,000
BATCH_SIZE Number of samples in each batch 128
TARGET_BATCH_SIZE Number of samples in each backward step, gradients will be accumulated over TARGET_BATCH_SIZE//BATCH_SIZE batches 256
WARMUP_STEPS Number of learning rate warmup steps 4000
LEARNING_RATE Initial learning rate, will be decayed after constant warmup of WARMUP_STEPS steps 1e-4

Others

Variable Description Default value
CHECKPOINT Path to checkpoint from which to resume training
VAE_CHECKPOINT Path to VQ-VAE checkpoint to be used for the learned description
ROOT_DIR The folder containing MIDI files to train on ./lmd_full
OUTPUT_DIR Folder for saving checkpoints ./results
LOGGING_DIR Folder for saving logs ./logs
N_WORKERS Number of workers to be used for the dataloader available CPUs

Generation (generate.py)

Variable Description Default value
MODEL Specify which model will be loaded
CHECKPOINT Path to the checkpoint for the specified model
VAE_CHECKPOINT Path to the VQ-VAE checkpoint to be used for the learned description (if applicable)
ROOT_DIR Folder containing MIDI files to extract descriptions from ./lmd_full
OUTPUT_DIR Folder to save generated MIDI samples to ./samples
MAX_ITER Max. number of tokens that should be generated 16,000
MAX_BARS Max. number of bars that should be generated 32
MAKE_MEDLEYS Set to True if descriptions should be combined into medleys. False
N_MEDLEY_PIECES Number of pieces to be combined into one 2
N_MEDLEY_BARS Number of bars to take from each piece 16
VERBOSE Logging level, set to 0 for silent execution 2

Evaluation (evaluate.py)

Variable Description Default value
SAMPLE_DIR Folder containing generated samples which should be evaluated ./samples
OUT_FILE CSV file to which a detailed log of all metrics will be saved to ./metrics.csv
MAX_SAMPLES Limit the number of samples to be used for computing evaluation metrics 1024
Owner
Dimitri
Dimitri
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022