Hypercomplex Neural Networks with PyTorch

Overview

HyperNets

Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate research in this topic.

Lightweight Convolutional Neural Networks By Hypercomplex Parameterization

Eleonora Grassucci, Aston Zhang, and Danilo Comminiello

[Abstract on OpenReview] [Paper on OpenReview]

Abstract

Hypercomplex neural networks have proved to reduce the overall number of parameters while ensuring valuable performances by leveraging the properties of Clifford algebras. Recently, hypercomplex linear layers have been further improved by involving efficient parameterized Kronecker products. In this paper, we define the parameterization of hypercomplex convolutional layers to develop lightweight and efficient large-scale convolutional models. Our method grasps the convolution rules and the filters organization directly from data without requiring a rigidly predefined domain structure to follow. The proposed approach is flexible to operate in any user-defined or tuned domain, from 1D to nD regardless of whether the algebra rules are preset. Such a malleability allows processing multidimensional inputs in their natural domain without annexing further dimensions, as done, instead, in quaternion neural networks for 3D inputs like color images. As a result, the proposed method operates with 1/n free parameters as regards its analog in the real domain. We demonstrate the versatility of this approach to multiple domains of application by performing experiments on various image datasets as well as audio datasets in which our method outperforms real and quaternion-valued counterparts.

Parameterized Hypercomplex Convolutional (PHC) Layer

The core of the approach is the sum of Kronecker products which grasps the convolution rule and the filters organization directly from data. The higlights of our approach is defined in:

def kronecker_product1(self, A, F):
  siz1 = torch.Size(torch.tensor(A.shape[-2:]) * torch.tensor(F.shape[-4:-2]))
  siz2 = torch.Size(torch.tensor(F.shape[-2:]))
  res = A.unsqueeze(-1).unsqueeze(-3).unsqueeze(-1).unsqueeze(-1) * F.unsqueeze(-4).unsqueeze(-6)
  siz0 = res.shape[:1]
  out = res.reshape(siz0 + siz1 + siz2)
  return out
 
def forward(self, input):
  self.weight = torch.sum(self.kronecker_product1(self.A, self.F), dim=0)
  input = input.type(dtype=self.weight.type())      
  return F.conv2d(input, weight=self.weight, stride=self.stride, padding=self.padding)

Te PHC layer, by setting n=4, is able to subsume the Hamilton rule to organize filters in the convolution as:

Usage

Tutorials

The folder tutorials contain a set of tutorial to understand the Parameterized Hypercomplex Multiplication (PHM) layer and the Parameterized Hypercomplex Convolutional (PHC) layer. We develop simple toy examples to learn the matrices A that define algebra rules in order to demonstrate the effectiveness of the proposed approach.

  • PHM tutorial.ipynb is a simple tutorial which shows how the PHM layer learns the Hamilton product between two pure quaternions.
  • PHC tutorial.ipynb is a simple tutorial which shows how the PHC layer learn the Hamilton rule to organize filters in convolution.
  • Toy regression examples with PHM.ipynb is a notebook containing some regression tasks.

Experiments on Image Classification

To reproduce image classification experiments, please refer to the image-classification folder.

  • pip install -r requirements.txt.
  • Choose the configurations in configs and run the experiment:

python main.py --TextArgs=config_name.txt.

The experiment will be directly tracked on Weight&Biases.

Experiments on Sound Event Detection

To reproduce sound event detection experiments, please refer to the sound-event-detection folder.

  • pip install -r requirements.txt.

We follow the instructions in the original repository for the L3DAS21 dataset:

  • Download the dataset:

python download_dataset.py --task Task2 --set_type train --output_path DATASETS/Task2

python download_dataset.py --task Task2 --set_type dev --output_path DATASETS/Task2

  • Preprocess the dataset:

python preprocessing.py --task 2 --input_path DATASETS/Task2 --num_mics 1 --frame_len 100

Specify num_mics=2 and output_phase=True to perform experiments up to 16-channel inputs.

  • Run the experiment:

python train_baseline_task2.py

Specify the hyperparameters options. We perform experiments with epochs=1000, batch_size=16 and input_channels=4/8/16 on a single Tesla V100-32GB GPU.

  • Run the evaluation:

python evaluate_baseline_task2.py

Specify the hyperparameters options.

More will be added

Soon: PHC layer for 1D convolutions!

Similar reporitories

Quaternion layers are borrowed from:

Cite

Owner
Eleonora Grassucci
PhD Candidate in ICT at ISPAMM Lab, Sapienza Università di Roma, Data Scientist.
Eleonora Grassucci
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022