Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Overview

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning

By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Cao, Stephen Lin and Han Hu.

This repo is an official implementation of "Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning" on PyTorch.

Introduction

PixPro (pixel-to-propagation) is an unsupervised visual feature learning approach by leveraging pixel-level pretext tasks. The learnt feature can be well transferred to downstream dense prediction tasks such as object detection and semantic segmentation. PixPro achieves the best transferring performance on Pascal VOC object detection (60.2 AP using C4) and COCO object detection (41.4 / 40.5 mAP using FPN / C4) with a ResNet-50 backbone.

An illustration of the proposed PixPro method.

Architecture of the PixContrast and PixPro methods.

Citation

@article{xie2020propagate,
  title={Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning},
  author={Xie, Zhenda and Lin, Yutong and Zhang, Zheng and Cao, Yue and Lin, Stephen and Hu, Han},
  conference={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Main Results

PixPro pre-trained models

Epochs Arch Instance Branch Download
100 ResNet-50 script | model
400 ResNet-50 script | model
100 ResNet-50 ✔️ -
400 ResNet-50 ✔️ -

Pascal VOC object detection

Faster-RCNN with C4

Method Epochs Arch AP AP50 AP75 Download
Scratch - ResNet-50 33.8 60.2 33.1 -
Supervised 100 ResNet-50 53.5 81.3 58.8 -
MoCo 200 ResNet-50 55.9 81.5 62.6 -
SimCLR 1000 ResNet-50 56.3 81.9 62.5 -
MoCo v2 800 ResNet-50 57.6 82.7 64.4 -
InfoMin 200 ResNet-50 57.6 82.7 64.6 -
InfoMin 800 ResNet-50 57.5 82.5 64.0 -
PixPro (ours) 100 ResNet-50 58.8 83.0 66.5 config | model
PixPro (ours) 400 ResNet-50 60.2 83.8 67.7 config | model

COCO object detection

Mask-RCNN with FPN

Method Epochs Arch Schedule bbox AP mask AP Download
Scratch - ResNet-50 1x 32.8 29.9 -
Supervised 100 ResNet-50 1x 39.7 35.9 -
MoCo 200 ResNet-50 1x 39.4 35.6 -
SimCLR 1000 ResNet-50 1x 39.8 35.9 -
MoCo v2 800 ResNet-50 1x 40.4 36.4 -
InfoMin 200 ResNet-50 1x 40.6 36.7 -
InfoMin 800 ResNet-50 1x 40.4 36.6 -
PixPro (ours) 100 ResNet-50 1x 40.8 36.8 config | model
PixPro (ours) 100* ResNet-50 1x 41.3 37.1 -
PixPro (ours) 400* ResNet-50 1x 41.4 37.4 -

* Indicates methods with instance branch.

Mask-RCNN with C4

Method Epochs Arch Schedule bbox AP mask AP Download
Scratch - ResNet-50 1x 26.4 29.3 -
Supervised 100 ResNet-50 1x 38.2 33.3 -
MoCo 200 ResNet-50 1x 38.5 33.6 -
SimCLR 1000 ResNet-50 1x 38.4 33.6 -
MoCo v2 800 ResNet-50 1x 39.5 34.5 -
InfoMin 200 ResNet-50 1x 39.0 34.1 -
InfoMin 800 ResNet-50 1x 38.8 33.8 -
PixPro (ours) 100 ResNet-50 1x 40.0 34.8 config | model
PixPro (ours) 400 ResNet-50 1x 40.5 35.3 config | model

Getting started

Requirements

At present, we have not checked the compatibility of the code with other versions of the packages, so we only recommend the following configuration.

  • Python 3.7
  • PyTorch == 1.4.0
  • Torchvision == 0.5.0
  • CUDA == 10.1
  • Other dependencies

Installation

We recommand using conda env to setup the experimental environments.

# Create environment
conda create -n PixPro python=3.7 -y
conda activate PixPro

# Install PyTorch & Torchvision
conda install pytorch=1.4.0 cudatoolkit=10.1 torchvision -c pytorch -y

# Install apex
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ..

# Clone repo
git clone https://github.com/zdaxie/PixPro ./PixPro
cd ./PixPro

# Create soft link for data
mkdir data
ln -s ${ImageNet-Path} ./data/imagenet

# Install other requirements
pip install -r requirements.txt

Pretrain with PixPro

# Train with PixPro base for 100 epochs.
./tools/pixpro_base_r50_100ep.sh

Transfer to Pascal VOC or COCO object detection

# Convert a pre-trained PixPro model to detectron2's format
cd transfer/detection
python convert_pretrain_to_d2.py ${Input-Checkpoint(.pth)} ./output.pkl  

# Install Detectron2
python -m pip install detectron2==0.2.1 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.4/index.html

# Create soft link for data
mkdir datasets
ln -s ${Pascal-VOC-Path}/VOC2007 ./datasets/VOC2007
ln -s ${Pascal-VOC-Path}/VOC2012 ./datasets/VOC2012
ln -s ${COCO-Path} ./datasets/coco

# Train detector with pre-trained PixPro model
# 1. Train Faster-RCNN with Pascal-VOC
python train_net.py --config-file configs/Pascal_VOC_R_50_C4_24k_PixPro.yaml --num-gpus 8 MODEL.WEIGHTS ./output.pkl
# 2. Train Mask-RCNN-FPN with COCO
python train_net.py --config-file configs/COCO_R_50_FPN_1x_PixPro.yaml --num-gpus 8 MODEL.WEIGHTS ./output.pkl
# 3. Train Mask-RCNN-C4 with COCO
python train_net.py --config-file configs/COCO_R_50_C4_1x_PixPro.yaml --num-gpus 8 MODEL.WEIGHTS ./output.pkl

# Test detector with provided fine-tuned model
python train_net.py --config-file configs/Pascal_VOC_R_50_C4_24k_PixPro.yaml --num-gpus 8 --eval-only \
  MODEL.WEIGHTS ./pixpro_base_r50_100ep_voc_md5_ec2dfa63.pth

More models and logs will be released!

Acknowledgement

Our testbed builds upon several existing publicly available codes. Specifically, we have modified and integrated the following code into this project:

Contributing to the project

Any pull requests or issues are welcomed.

Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021