We are More than Our JOints: Predicting How 3D Bodies Move

Overview

We are More than Our JOints: Predicting How 3D Bodies Move

Citation

This repo contains the official implementation of our paper MOJO:

@inproceedings{Zhang:CVPR:2021,
  title = {We are More than Our Joints: Predicting how {3D} Bodies Move},
  author = {Zhang, Yan and Black, Michael J. and Tang, Siyu},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}
}

License

We employ CC BY-NC-SA 4.0 for the MOJO code, which covers

models/fittingop.py
experiments/utils/batch_gen_amass.py
experiments/utils/utils_canonicalize_amass.py
experiments/utils/utils_fitting_jts2mesh.py
experiments/utils/vislib.py
experiments/vis_*_amass.py

The rest part are developed based on DLow. According to their license, the implementation follows its CMU license.

Environment & code structure

  • Tested OS: Linux Ubuntu 18.04
  • Packages:
  • Note: All scripts should be run from the root of this repo to avoid path issues. Also, please fix some path configs in the code, otherwise errors will occur.

Training

The training is split to two steps. Provided we have a config file in experiments/cfg/amass_mojo_f9_nsamp50.yml, we can do

  • python experiments/train_MOJO_vae.py --cfg amass_mojo_f9_nsamp50 to train the MOJO
  • python experiments/train_MOJO_dlow.py --cfg amass_mojo_f9_nsamp50 to train the DLow

Evaluation

These experiments/eval_*.py files are for evaluation. For eval_*_pred.py, they can be used either to evaluate the results while predicting, or to save results to a file for further evaluation and visualization. An example is python experiments/eval_kps_pred.py --cfg amass_mojo_f9_nsamp50 --mode vis, which is to save files to the folder results/amass_mojo_f9_nsamp50.

Generation

In MOJO, the recursive projection scheme is to get 3D bodies from markers and keep the body valid. The relevant implementation is mainly in models/fittingop.py and experiments/test_recursive_proj.py. An example to run is

python experiments/test_recursive_proj.py --cfg amass_mojo_f9_nsamp50 --testdata ACCAD --gpu_index 0

Datasets

In MOJO, we have used AMASS, Human3.6M, and HumanEva.

For Human3.6M and HumanEva, we follow the same pre-processing step as in DLow, VideoPose3D, and others. Please refer to their pages, e.g. this one, for details.

For AMASS, we perform canonicalization of motion sequences with our own procedures. The details are in experiments/utils_canonicalize_amass.py. We find this sequence canonicalization procedure is important. The canonicalized AMASS used in our work can be downloaded here, which includes the random sample names of ACCAD and BMLhandball used in our experiments about motion realism.

Models

For human body modeling, we employ the SMPL-X parametric body model. You need to follow their license and download. Based on SMPL-X, we can use the body joints or a sparse set of body mesh vertices (the body markers) to represent the body.

  • CMU It has 41 markers, the corresponding SMPL-X mesh vertex ID can be downloaded here.
  • SSM2 It has 64 markers, the corresponding SMPL-X mesh vertex ID can be downloaded here.
  • Joints We used 22 joints. No need to download, but just obtain them from the SMPL-X body model. See details in the code.

Our CVAE model configurations are in experiments/cfg. The pre-trained checkpoints can be downloaded here.

Related projects

  • AMASS: It unifies diverse motion capture data with the SMPL-H model, and provides a large-scale high-quality dataset. Its official codebase and tutorials are in this github repo.

  • GRAB: Most mocap data only contains the body motion. GRAB, however, provides high-quality data of human-object interactions. Besides capturing the body motion, the object motion and the hand-object contact are captured simultaneously. More demonstrations are in its github repo.

Acknowledgement & disclaimer

We thank Nima Ghorbani for the advice on the body marker setting and the {\bf AMASS} dataset. We thank Yinghao Huang, Cornelia K"{o}hler, Victoria Fern'{a}ndez Abrevaya, and Qianli Ma for proofreading. We thank Xinchen Yan and Ye Yuan for discussions on baseline methods. We thank Shaofei Wang and Siwei Zhang for their help with the user study and the presentation, respectively.

MJB has received research gift funds from Adobe, Intel, Nvidia, Facebook, and Amazon. While MJB is a part-time employee of Amazon, his research was performed solely at, and funded solely by, Max Planck. MJB has financial interests in Amazon Datagen Technologies, and Meshcapade GmbH.

PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022