Few-Shot Object Detection via Association and DIscrimination

Related tags

Deep LearningFADI
Overview

Few-Shot Object Detection via Association and DIscrimination

Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIscrimination.

FSCE Figure

Bibtex

@inproceedings{cao2021few,
  title={Few-Shot Object Detection via Association and DIscrimination},
  author={Cao, Yuhang and Wang, Jiaqi and Jin, Ying and Wu, Tong and Chen, Kai and Liu, Ziwei and Lin, Dahua},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Arxiv: https://arxiv.org/abs/2111.11656

Install dependencies

  • Create a new environment: conda create -n fadi python=3.8 -y
  • Active the newly created environment: conda activate fadi
  • Install PyTorch and torchvision: conda install pytorch=1.7 torchvision cudatoolkit=10.2 -c pytorch -y
  • Install MMDetection: pip install mmdet==2.11.0
  • Install MMCV: pip install mmcv==1.2.5
  • Install MMCV-Full: pip install mmcv-full==1.2.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.7.0/index.html

Note:

  • Only tested on MMDet==2.11.0, MMCV==1.2.5, it may not be consistent with other versions.
  • The above instructions use CUDA 10.2, make sure you install the correct PyTorch, Torchvision and MMCV-Full that are consistent with your CUDA version.

Prepare dataset

We follow exact the same split with TFA, please download the dataset and split files as follows:

Create a directory data in the root directory, and the expected structure for data directory:

data/
    VOCdevkit
    few_shot_voc_split

Training & Testing

Base Training

FADI share the same base training stage with TFA, we directly convert the corresponding checkpoints from TFA in Detectron2 format to MMDetection format, please download the base training checkpoints following the table.

Name Split
AP50
download
Base Model 1 80.8 model  | surgery
Base Model 2 81.9 model  | surgery
Base Model 3 82.0 model  | surgery

Create a directory models in the root directory, and the expected structure for models directory:

models/
    voc_split1_base.pth
    voc_split1_base_surgery.pth
    voc_split2_base.pth
    voc_split2_base_surgery.pth
    voc_split3_base.pth
    voc_split3_base_surgery.pth

Few-Shot Fine-tuning

FADI divides the few-shot fine-tuning stage into two steps, ie, association and discrimination,

Suppose we want to train a model for Pascal VOC split1, shot1 with 8 GPUs

1. Step 1: Association.

Getting the assigning scheme of the split:

python tools/associate.py 1

Aligning the feature distribution of the associated base and novel classes:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_association.py 8

2. Step 2: Discrimination

Building a discriminate feature space for novel classes with disentangling and set-specialized margin loss:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_discrimination.py 8

Holistically Training:

We also provide you a script tools/fadi_finetune.sh to holistically train a model for a specific split/shot by running:

./tools/fadi_finetune.sh 1 1

Evaluation

To evaluate the trained models, run

./tools/dist_test.sh configs/voc_split1/fadi_split1_shot1_discrimination.py [checkpoint] 8 --eval mAP --out res.pkl

Model Zoo

Pascal VOC split 1

Shot
nAP50
download
1 50.6 association  | discrimination
2 54.8 association  | discrimination
3 54.1 association  | discrimination
5 59.4 association  | discrimination
10 63.5 association  | discrimination

Pascal VOC split 2

Shot
nAP50
download
1 30.5 association  | discrimination
2 35.1 association  | discrimination
3 40.3 association  | discrimination
5 42.9 association  | discrimination
10 48.3 association  | discrimination

Pascal VOC split 3

Shot
nAP50
download
1 45.7 association  | discrimination
2 49.4 association  | discrimination
3 49.4 association  | discrimination
5 55.1 association  | discrimination
10 59.3 association  | discrimination
Owner
Cao Yuhang
Cao Yuhang
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022