TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

Overview

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++ is a novel multi-object TSDF formulation that can encode multiple object surfaces at each voxel. In a multiple dynamic object tracking and reconstruction scenario, a TSDF++ map representation allows maintaining accurate reconstruction of surfaces even while they become temporarily occluded by other objects moving in their proximity. At the same time, the representation allows maintaining a single volume for the entire scene and all the objects therein, thus solving the fundamental challenge of scalability with respect to the number of objects in the scene and removing the need for an explicit occlusion handling strategy.

Citing

When using TSDF++ in your research, please cite the following publication:

Margarita Grinvald, Federico Tombari, Roland Siegwart, and Juan Nieto, TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction, in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021. [Paper] [Video]

@article{grinvald2021tsdf,
  author={M. {Grinvald} and F. {Tombari} and R. {Siegwart} and J. {Nieto}},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  title={{TSDF++}: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction},
  year={2021},
}

Installation

The installation has been tested on Ubuntu 16.04 and Ubutnu 20.04.

Requirements

Install dependencies

Install ROS following the instructions at the ROS installation page. The full install (ros-kinetic-desktop-full, ros-melodic-desktop-full) are recommended.

Make sure to source your ROS setup.bash script by following the instructions on the ROS installation page.

Installation on Ubuntu

In your terminal, define the installed ROS version and name of the catkin workspace to use:

export ROS_VERSION=kinetic # (Ubuntu 16.04: kinetic, Ubuntu 18.04: melodic)
export CATKIN_WS=~/catkin_ws

If you don't have a catkin workspace yet, create a new one:

mkdir -p $CATKIN_WS/src && cd $CATKIN_WS
catkin init
catkin config --extend /opt/ros/$ROS_VERSION --merge-devel 
catkin config --cmake-args -DCMAKE_CXX_STANDARD=14 -DCMAKE_BUILD_TYPE=Release
wstool init src

Clone the tsdf-plusplus repository over HTTPS (no Github account required) and automatically fetch dependencies:

cd $CATKIN_WS/src
git clone https://github.com/ethz-asl/tsdf-plusplus.git
wstool merge -t . tsdf-plusplus/tsdf_plusplus_https.rosinstall
wstool update

Alternatively, clone over SSH (Github account required):

cd $CATKIN_WS/src
git clone [email protected]:ethz-asl/tsdf-plusplus.git
wstool merge -t . tsdf-plusplus/tsdf_plusplus_ssh.rosinstall
wstool update

Build and source the TSDF++ packages:

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation
source ../devel/setup.bash # (bash shell: ../devel/setup.bash,  zsh shell: ../devel/setup.zsh)

Troubleshooting

Compilation freeze

By default catkin build on a computer with N CPU cores will run N make jobs simultaneously. If compilation seems to hang forever, it might be running low on RAM. Try limiting the number of maximum parallel build jobs through the -jN flag to a value way lower than your CPU count, i.e.

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation -j4

If it still freezes at compilation time, you can go as far as limiting the maximum number of parallel build jobs and max load to 1 through the -lN flag:

catkin build tsdf_plusplus_ros rgbd_segmentation mask_rcnn_ros cloud_segmentation -j1 -l1

License

The code is available under the MIT license.

Owner
ETHZ ASL
ETHZ ASL
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022