GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

Overview

GDR-Net

This repo provides the PyTorch implementation of the work:

Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. In CVPR 2021. [Paper][ArXiv][Video][bibtex]

Overview

Requirements

  • Ubuntu 16.04/18.04, CUDA 10.1/10.2, python >= 3.6, PyTorch >= 1.6, torchvision
  • Install detectron2 from source
  • sh scripts/install_deps.sh
  • Compile the cpp extension for farthest points sampling (fps):
    sh core/csrc/compile.sh
    

Datasets

Download the 6D pose datasets (LM, LM-O, YCB-V) from the BOP website and VOC 2012 for background images. Please also download the image_sets and test_bboxes from here (BaiduNetDisk, OneDrive, password: qjfk).

The structure of datasets folder should look like below:

# recommend using soft links (ln -sf)
datasets/
├── BOP_DATASETS
    ├──lm
    ├──lmo
    ├──ycbv
├── lm_imgn  # the OpenGL rendered images for LM, 1k/obj
├── lm_renders_blender  # the Blender rendered images for LM, 10k/obj (pvnet-rendering)
├── VOCdevkit

Training GDR-Net

./core/gdrn_modeling/train_gdrn.sh <config_path> <gpu_ids> (other args)

Example:

./core/gdrn_modeling/train_gdrn.sh configs/gdrn/lm/a6_cPnP_lm13.py 0  # multiple gpus: 0,1,2,3
# add --resume if you want to resume from an interrupted experiment.

Our trained GDR-Net models can be found here (BaiduNetDisk, OneDrive, password: kedv).
(Note that the models for BOP setup in the supplement were trained using a refactored version of this repo (not compatible), they are slightly better than the models provided here.)

Evaluation

./core/gdrn_modeling/test_gdrn.sh <config_path> <gpu_ids> <ckpt_path> (other args)

Example:

./core/gdrn_modeling/test_gdrn.sh configs/gdrn/lmo/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_40e.py 0 output/gdrn/lmo/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_40e/gdrn_lmo_real_pbr.pth

Citation

If you find this useful in your research, please consider citing:

@InProceedings{Wang_2021_GDRN,
    title     = {{GDR-Net}: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation},
    author    = {Wang, Gu and Manhardt, Fabian and Tombari, Federico and Ji, Xiangyang},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {16611-16621}
}
Comments
  • 关于cuda版本的问题

    关于cuda版本的问题

    您好,请问我使用cuda11以上的版本可以训练吗,因为我只有A6000和A100的显卡,它们不兼容cuda11以下的版本。我用cuda11.1和torch1.8或者1.9训练时,都会报double free or corruption (!prev)、RuntimeError: DataLoader worker (pid(s) xxxxx) exited unexpectedly。

    help wanted 
    opened by fn6767 9
  • Pipeline to print inferred 3D bounding boxes on images

    Pipeline to print inferred 3D bounding boxes on images

    Hello! I find this work really interesting. After successfully testing inference (LMO and YCB) I was just interested in plotting the inference results as 3D bounding boxes on RGB images and by inspecting the code I bumped into:

    https://github.com/THU-DA-6D-Pose-Group/GDR-Net/blob/5fb30c3dc53f46bac24a8a83a373eac7a8038556/core/gdrn_modeling/gdrn_evaluator.py#L516

    it is the function used for inference, which seems to show the results in terms of the different metrics, but not showing graphical results as I am looking for

    In the same file I noticed the function: https://github.com/THU-DA-6D-Pose-Group/GDR-Net/blob/5fb30c3dc53f46bac24a8a83a373eac7a8038556/core/gdrn_modeling/gdrn_evaluator.py#L634

    which seems structurally similar but with some input differences, in particular I would like to ask if the input dataloader can be be computed for gdrn_inference_on_dataset as for save_result_of_dataset as in

    https://github.com/THU-DA-6D-Pose-Group/GDR-Net/blob/5fb30c3dc53f46bac24a8a83a373eac7a8038556/core/gdrn_modeling/engine.py#L135-L137

    Since from preliminar debugging it seems it is not possible to access to the "image" field of the input sample in

    https://github.com/THU-DA-6D-Pose-Group/GDR-Net/blob/5fb30c3dc53f46bac24a8a83a373eac7a8038556/core/gdrn_modeling/gdrn_evaluator.py#L678

    Possibly related issue: https://github.com/THU-DA-6D-Pose-Group/GDR-Net/issues/56

    opened by AlbertoRemus 8
  • Some question of the paper

    Some question of the paper

    你好,论文里关于MXYZ到M2D-3D的转化是这样说的。"$M_{2D-3D}$ can then be derived by stacking $M_{XYZ}$onto the corresponding 2D pixel coordinates". 但是我还是不太清楚为什么从$3\times64\times64$维度的$M_{XYZ}$转变成了$2\times64\times64$维度的$M_{2D-3D}$。以及为什么要做这样一个转化呢,直接将预测的XYZ归一化之后和MSRA Concatenation不行吗?

    opened by Mr2er0 8
  • 关于更换数据的问题

    关于更换数据的问题

    王博,您好! 您的工作对我的帮助很大,非常感谢您提供的开源项目。现在我想使用自己的数据在您的模型上训练,之前的一些issue里您只提到了应该如何处理和组织自己的数据,但并没有提及如果要使用自己的数据,应该修改哪些部分的代码。因为之前在lm数据集上训练时需要先生成一些文件,所以我猜测如果要将模型应用在自己的数据上,可能需要修改的地方有很多,可以请您具体讲讲吗? 期待您的回复,再次致谢!

    opened by micki-37 7
  • Questions about LM-O evaluation results

    Questions about LM-O evaluation results

    Hi! thanks for your great work. I execute the following command to get the evaluation results of LM-O as follows, ‘GDR-Net-DATA‘ is the folder where I put the trained models. ./core/gdrn_modeling/test_gdrn.sh configs/gdrn/lmo/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_40e.py 1 GDR-Net-DATA/gdrn/lmo/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_40e/gdrn_lmo_real_pbr.pth 2345截图20210821172336 Is ‘ad_10’ the ‘Average Recall (%) of ADD(-S)’ mentioned in Table 2 in the paper?

    opened by Liuchongpei 7
  • Zero recall value while evaluating on LMO dataset

    Zero recall value while evaluating on LMO dataset

    Hello @wangg12

    I tried to evaluate the GDR-Net model on LMO dataset using the pretrained models you shared on OneDrive. I used following command to run the valuation:

    python core/gdrn_modeling/main_gdrn.py --config-file configs/gdrn/lmo/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_40e.py \
     --num-gpus 1 \
    --eval-only  \
    --opts MODEL.WEIGHTS=output/gdrn/lmo/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_40e/gdrn_lmo_real_pbr.pth
    

    However, it is showing zero recall values. Please see the screenshot below. Could you please help?

    Thank you, Supriya image

    opened by supriya-gdptl 6
  • evaluation failed for lmoSO

    evaluation failed for lmoSO

    Hi,

    When I train GDR-Net on ape of LMO dataset by

    ./core/gdrn_modeling/train_gdrn.sh configs/gdrn/lmoSO/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_80e_SO/a6_cPnP_AugAAETrunc_BG0.5_lmo_real_pbr0.1_80e_ape.py 1
    

    I get the unexpected output at the end of log.txt:

    core.gdrn_modeling.test_utils [email protected]: evaluation failed.
    core.gdrn_modeling.test_utils [email protected]: =====================================================================
    core.gdrn_modeling.test_utils [email protected]: output/gdrn/lmoSO/a6_cPnP_AugAAETrunc_lmo_real_pbr0.1_80e_SO/ape/inference_model_final/lmo_test/a6-cPnP-AugAAETrunc-BG0.5-lmo-real-pbr0.1-80e-ape-test-iter0_lmo-test-bb8/error:ad_ntop:1 does not exist.
    

    Could you suggest how to fix it? Thanks!

    opened by RuyiLian 6
  • One drive link seems not working

    One drive link seems not working

    Hi, unfortunately the One-Drive link of pretrained model seems to provide the following error on different browsers, do you have any insight about this?

    Thanks in advance,

    Alberto

    Screenshot from 2022-09-08 18-15-36

    opened by AlbertoRemus 5
  • 关于xyz_crop生成问题

    关于xyz_crop生成问题

    王博你好,我在使用tools/lm/lm_pbr_1_gen_xyz_crop.py生成xyz_crop文件的过程中遇到了这个问题。

    Traceback (most recent call last): File "tools/lm/lmo_pbr_1_gen_xyz_crop.py", line 228, in xyz_gen.main() File "tools/lm/lmo_pbr_1_gen_xyz_crop.py", line 137, in main bgr_gl, depth_gl = self.get_renderer().render(render_obj_id, IM_W, IM_H, K, R, t, near, far) File "tools/lm/lmo_pbr_1_gen_xyz_crop.py", line 98, in get_renderer self.renderer = Renderer( File "/data/hsm/gdr/tools/lm/../../lib/meshrenderer/meshrenderer_phong.py", line 26, in init self._fbo = gu.Framebuffer( File "/data/hsm/gdr/tools/lm/../../lib/meshrenderer/gl_utils/fbo.py", line 22, in init glNamedFramebufferTexture(self.__id, k, attachement.id, 0) File "/data/hsm/env/gdrn2/lib/python3.8/site-packages/OpenGL/platform/baseplatform.py", line 415, in call return self( *args, **named ) ctypes.ArgumentError: argument 1: <class 'TypeError'>: wrong type

    我认为可能是在 https://github.com/THU-DA-6D-Pose-Group/GDR-Net/blob/main/lib/meshrenderer/gl_utils/fbo.py#L19 中传入的k类型不匹配所以出错。图片为debug中显示的glNamedFramebufferTexture函数要求传入的数据类型。 图片 在issue中没有找到与我类似的问题,请问有人有任何解决这个问题的相关建议吗?

    need-more-info 
    opened by hellohaley 5
  • CUDA out of memory

    CUDA out of memory

    We implement the training process with pbr rendered data on eight GPU parallel computing (NIVDIA 2080 Ti with graphic memory of 12 G) , it barely starts training in batchsize 8 (original is 24). But when we resume the training process, CUDA will be out of memory.

    We'd like to know the author's training configuration...

    opened by GabrielleTse 5
  • Loss_region unable to converge

    Loss_region unable to converge

    1 Other Loss has significant decline, but Loss_region‘s drop is very weak. My training use config : configs/gdrn/lm/a6_cPnP_lm13.py Region area choose 4, 16, 64 can not make any improve.

    opened by lu-ming-lei 5
  • Generating test_bboxes/faster_R50_FPN_AugCosyAAE_HalfAnchor_lmo_pbr_lmo_fuse_real_all_8e_test_480x640.json file

    Generating test_bboxes/faster_R50_FPN_AugCosyAAE_HalfAnchor_lmo_pbr_lmo_fuse_real_all_8e_test_480x640.json file

    Hello @wangg12,

    Sorry to bother you again.

    Could you please tell me how to generate faster_R50_FPN_AugCosyAAE_HalfAnchor_lmo_pbr_lmo_fuse_real_all_8e_test_480x640.json in lmo/test/test_bboxes folder?

    Which code did you run to obtain this file?

    Thank you, Supriya

    opened by supriya-gdptl 1
Releases(v1.1)
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022