Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Overview

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN

Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Requirements

Create a virtual environment:

virtualenv pasta --python=3.7
source pasta/bin/activate

Install required packages:

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install click requests tqdm pyspng ninja imageio-ffmpeg==0.4.3
pip install psutil scipy matplotlib opencv-python scikit-image==0.18.3 pycocotools
apt install libgl1-mesa-glx

Data Preparation

Since the copyright of the UPT dataset belongs to the E-commerce website Zalando and Zalora, we only release the image links in this link. For more details about the dataset and the crawling scripts, please send email to [email protected].

After downloading the raw RGB image, we run the pose estimator Openpose and human parser Graphonomy for each image to obtain the 18-points human keypoints and the 19-labels huamn parsing, respectively.

The dataset structure is recommended as:

+—UPT_256_192
|   +—UPT_subset1_256_192
|       +-image
|           +- e.g. image1.jpg
|           +- ...
|       +-keypoints
|           +- e.g. image1_keypoints.json
|           +- ...
|       +-parsing
|           +- e.g. image1.png
|           +- ...
|       +-train_pairs_front_list_0508.txt
|       +-test_pairs_front_list_shuffle_0508.txt
|   +—UPT_subset2_256_192
|       +-image
|           +- ...
|       +-keypoints
|           +- ...
|       +-parsing
|           +- ...
|       +-train_pairs_front_list_0508.txt
|       +-test_pairs_front_list_shuffle_0508.txt
|   +— ...

By using the raw RGB image, huamn keypoints, and human parsing, we can run the training script and the testing script.

Running Inference

We provide the pre-trained models of PASTA-GAN which are trained by using the full UPT dataset (i.e., our newly collected data, data from Deepfashion dataset, data from MPV dataset) with the resolution of 256 and 512 separately.

we provide a simple script to test the pre-trained model provided above on the UPT dataset as follow:

CUDA_VISIBLE_DEVICES=0 python3 -W ignore test.py \
    --network /datazy/Codes/PASTA-GAN/PASTA-GAN_fullbody_model/network-snapshot-004000.pkl \
    --outdir /datazy/Datasets/pasta-gan_results/unpaired_results_fulltryonds \
    --dataroot /datazy/Datasets/PASTA_UPT_256 \
    --batchsize 16

or you can run the bash script by using the following command:

bash test.sh 1

To test with higher resolution pretrained model (512x320), you can run the bash script by using the following command:

bash test.sh 2

Note that, in the testing script, the parameter --network refers to the path of the pre-trained model, the parameter --outdir refers to the path of the directory for generated results, the parameter --dataroot refers to the path of the data root. Before running the testing script, please make sure these parameters refer to the correct locations.

Running Training

Training the 256x192 PASTA-GAN full body model on the UPT dataset

  1. Download the UPT_256_192 training set.
  2. Download the VGG model from VGG_model, then put "vgg19_conv.pth" and "vgg19-dcbb9e9d" under the directory "checkpoints".
  3. Run bash train.sh 1.

Todo

  • Release the the pretrained model (256x192) and the inference script.
  • Release the training script.
  • Release the pretrained model (512x320).
  • Release the training script for model (512x320).

License

The use of this code is RESTRICTED to non-commercial research and educational purposes.

Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022