Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Related tags

Deep LearningVE-PCN
Overview

Voxel-based Network for Shape Completion by Leveraging Edge Generation

This is the PyTorch implementation for the paper "Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)"

Getting Started

python version: python-3.6; cuda version: cuda-10; PyTorch version: 1.5

Compile Customized Operators

Build operators under ops by using python setup.py install.

Datasets

Our dataset PCN's dataset TopNet's dataset

Train the model

To train the models on pcn dataset: python train_edge.py
--train_pcn;
--loss_type: pcn;
--train_path: the training data;
--eval_path: the validation data;
--n_gt_points: 16384;
--n_out_points: 16384;
--density_weight:1e11;
--dense_cls_weight:1000;
--p_norm_weight:0;
--dist_regularize_weight:0;
--chamfer_weight:1e6;
--lr 0.0007.

To train the models on topnet dataset: python train_edge.py
--train_pcn;
--loss_type: topnet;
--train_path: the training data;
--eval_path: the validation data;
--n_gt_points: 2048;
--n_out_points: 2048;
--density_weight:1e10;
--dense_cls_weight:100;
--p_norm_weight:300;
--dist_regularize_weight:0.3;
--chamfer_weight:1e4;
--augment;
--lr 0.0007.

To train the models on our dataset: python train_edge.py
--train_seen;
--loss_type: topnet;
--h5_train: the training data;
--h5_val: the validation data;
--n_gt_points: 2048;
--n_out_points: 2048;
--density_weight:1e10;
--dense_cls_weight:100;
--p_norm_weight:300;
--dist_regularize_weight:0.3;
--chamfer_weight:1e4;
--lr 0.0007.

Evaluate the models

The pre-trained models can be downloaded here: Models, unzip and put them in the root directory.
To evaluate models: python test_edge.py
--loss_type: topnet or pcn;
--eval_path: the test data from different cases;
--checkpoint: the pre-trained models;
--num_gt_points: the resolution of ground truth point clouds.

Citation

@inproceedings{wang2021voxel,
     author = {Wang, Xiaogang and , Marcelo H. Ang Jr. and Lee, Gim Hee},
     title = {Voxel-based Network for Shape Completion by Leveraging Edge Generation},
     booktitle = {ICCV)},
     year = {2021},
}

Acknowledgements

Our implementations use the code from the following repository:
Chamferdistance
PointNet++
convolutional_point_cloud_decoder

Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023