Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Related tags

Deep LearningTSP-HAC
Overview

Paper

For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted at AAAI 2022. If this code is useful for your work, please cite our paper:

@inproceedings{zhang2022learning,
  title={Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum},
  author={Zeyang Zhang and Ziwei Zhang and Xin Wang and Wenwu Zhu},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}

Dependencies

Require python>=3.8

Install other packages

pip install torch matplotlib scipy tqdm tensorboard sklearn jupyter jupyterlab pandas gurobipy seaborn tensorboardX

And follow https://github.com/wouterkool/attention-learn-to-route to install Gurobi Solver. In short, it can be installed by conda:

conda config --add channels http://conda.anaconda.org/gurobi
conda install gurobi

Or manually: Find and download the package in https://anaconda.org/Gurobi/gurobi/files?page=0, then use conda install.

Usage

  1. generate data This step generates necessary TSP Instances for experiments.
python src/generate_data.py --problem tsp --graph_sizes 50 --name val_mg --seed 2222 --dataset_size 10000 --generate_type mg
python src/generate_data.py --problem tsp --graph_sizes 50 --name train --seed 1111 --dataset_size 10000 --generate_type random -f 
python preprocess.py
  1. preliminary study This step shows the optimality gaps of TSP instances generated from gaussian mixture generator as $c_{\text{dist}}$ increases
python preliminary.py
  1. Hardness-adaptive generator This step shows the optimality gaps of TSP instances generated from hardness-adaptive generator as $\eta$ increases
python hag.py
  1. Hardness-adaptive Curriculum This step shows the optimality gaps with or without hardness-adaptive curriculum. In this case, training data and testing data is from uniform and gaussian mixture respectively. Replace 'X' with GPU device id.
CUDA_VISIBLE_DEVICES=X python main.py --train_type uniform --iters 15
CUDA_VISIBLE_DEVICES=X python main.py --train_type hardness-adaptive --iters 15
  1. showcase This step shows some cases of instances generated by hardness-adaptive generator.
python showcase.py

Acknowledgements

This repo is modified mainly based on the code https://github.com/wouterkool/attention-learn-to-route.

deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022