*ObjDetApp* deploys a pytorch model for object detection
____ _ _ _____ _
/ __ \| | (_) __ \ | | /\
| | | | |__ _| | | | ___| |_ / \ _ __ _ __
| | | | '_ \| | | | |/ _ \ __| / /\ \ | '_ \| '_ \
| |__| | |_) | | |__| | __/ |_ / ____ \| |_) | |_) |
\____/|_.__/| |_____/ \___|\__/_/ \_\ .__/| .__/
_/ | | | | |
|__/ |_| |_|
====================================================================
CONTENTS *Contents*
1. Introduction .................... |Introduction|
2. Prerequisites ................... |Prerequisites|
3. Usage ........................... |Usage|
3.1 WebApp ..................... |WebAppUsage|
3.2 GUIApp ..................... |GUIAppUsage|
4. Credits ......................... |Credits|
5. License ......................... |License|
====================================================================
Section 1: Introduction *Introduction*
This is a side project (or not qualified as a project) derived from a school
assignment, which focuses on the deployment of a pytorch model for object
detection, hence the name.
The model's performance is really bad but this app doesn't focus on that anyway.
You can help me perfect and package it by forking.
App tested on Linux.
====================================================================
Section 2: Prerequisites *Prerequisites*
Get trained *model_state_dict.pth* from https://drive.google.com/file/d/1oi8iIQGn0OFSRf44hWLI8kCbj5OrlkCy/view?usp=sharing and put it under this folder.
>
sudo apt install default-libmysqlclient-dev
pip install -r requirements.txt
npm install
<
====================================================================
Section 3: Usage *Usage*
WebApp:~
*WebAppUsage*
Start backend server (Default port: 5000)
>
FLASK_ENV=development FLASK_APP=server.py flask run
<
Build (Default into build/)
>
npm run build
<
Serve the webpage (Default port: 5512)
>
npm run dev
<
GUIApp:~
*GUIAppUsage*
>
python gui.py
<
====================================================================
Section 4: Credits *Credits*
ObjDetApp wouldn't be possible without these wonderful projects.
https://github.com/pallets/flask
https://github.com/pytorch/pytorch
Shout out to @sgrvinod for his great tutorial.
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection/
====================================================================
Section 5: License *License*
Copyright © 2021 Will Chao. Distributed under the MIT license.
====================================================================
vim:tw=78:ts=8:ft=help:noet:nospell
*ObjDetApp* deploys a pytorch model for object detection
Overview
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware
DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.
This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.
Turn based roguelike in python
pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)
Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words
Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:
The 2nd place solution of 2021 google landmark retrieval on kaggle.
Leaderboard, taxonomy, and curated list of few-shot object detection papers.
Implementation of Bottleneck Transformer in Pytorch
Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms
Self-Supervised Learning for Domain Adaptation on Point-Clouds
Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from
audioLIME: Listenable Explanations Using Source Separation
audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info
A Closer Look at Structured Pruning for Neural Network Compression
A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w
A Real-Time-Strategy game for Deep Learning research
Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi
style mixing for animation face
An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re
Histology images query (unsupervised)
110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher
nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning
MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan
Custom Implementation of Non-Deep Networks
ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.
Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.