DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

Related tags

Deep LearningDropNAS
Overview

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS, a grouped operation dropout method for one-level DARTS, with better and more stable performance.

Requirements

  • python-3.5.2
  • pytorch-1.0.0
  • torchvision-0.2.0
  • tensorboardX-2.0
  • graphviz-0.14

How to use the code

  • Search
# with the default setting presented in paper, but you may need to adjust the batch size to prevent OOM 
python3 search.py --name cifar10_example --dataset CIFAR10 --gpus 0
  • Augment
# use the genotype we found on CIFAR10

python3 augment.py --name cifar10_example --dataset CIFAR10 --gpus 0 --genotype "Genotype(
    normal=[[('sep_conv_3x3', 1), ('skip_connect', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('dil_conv_5x5', 4), ('dil_conv_3x3', 1)]],
    normal_concat=range(2, 6),
    reduce=[[('max_pool_3x3', 0), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 2), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 2)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 4)]],
    reduce_concat=range(2, 6)
)"

Results

The following results in CIFAR-10/100 are obtained with the default setting. More results with different arguements and other dataset like ImageNet can be found in the paper.

Dataset Avg Acc (%) Best Acc (%)
CIFAR-10 97.42±0.14 97.74
CIFAR-100 83.05±0.41 83.61

The performance of DropNAS and one-level DARTS across different search spaces on CIFAR-10/100.

Dataset Search Space DropNAS Acc (%) one-level DARTS Acc (%)
CIFAR-10 3-skip 97.32±0.10 96.81±0.18
1-skip 97.33±0.11 97.15±0.12
original 97.42±0.14 97.10±0.16
CIFAR-100 3-skip 83.03±0.35 82.00±0.34
1-skip 83.53±0.19 82.27±0.25
original 83.05±0.41 82.73±0.36

The test error of DropNAS on CIFAR-10 when different operation groups are applied with different drop path rates.

r_p=1e-5 r_p=3e-5 r_p=1e-4
r_np=1e-5 97.40±0.16 97.28±0.04 97.36±0.12
r_np=3e-5 97.36±0.11 97.42±0.14 97.31±0.05
r_np=1e-4 97.35±0.07 97.31±0.10 97.37±0.16

Found Architectures

cifar10-normal cifar10-reduce
CIFAR-10

cifar100-normal cifar100-reduce
CIFAR100

Reference

[1] https://github.com/quark0/darts (official implementation of DARTS)

[2] https://github.com/khanrc/pt.darts

[3] https://github.com/susan0199/StacNAS (feature map code used in our paper)

Owner
weijunhong
weijunhong
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022