The VarCNN is an Convolution Neural Network based approach to automate Video Assistant Referee in football.

Related tags

Deep LearningVarCnn
Overview

VarCnn: The Deep Learning Powered VAR

Detailed arricle on the project using the above data can be fount at https://aamir07.medium.com/var-cnn-football-foul-or-clean-tackle-4ff6629c83db

Web App Hosted at https://share.streamlit.io/aamir09/varcnnapp/main/app.py

Tutorial on Youtube: https://www.youtube.com/watch?v=GXW7YWE3vxY

Football is the most followed sport in the world, played in more than 200M+ countries. The sport has developed a lot in the recent century and so has the technology involved in the game. The Virtual Assistant Referee (VAR) is one of them and has impacted the game to a large extent. The role of VAR is simple yet complex; to intervene in between the play when the referees make a wrong decision or cannot make one. A specific scenario arises when they have to decide if a sliding tackle inside the box has resulted in a clean tackle or penalty for the opposition team. The technology is there to watch the moment at which tackle took place on repeat but the decisions are still made by humans and hence can be biased. I propose a CNN based foul detection which is theoretically based on the principle of the initial point of contact.

Data

Collecting the data has been a ponderous task, there are no open-source resources for the kind of data of any league. The only available sources are the video clips of the European matches and compilations on youtube of tackling and fouls. A small chunk of data is also acquired from the paper Soccer Event Detection Using Deep Learning.

image

Model Architecture

image

Results & Inferences

Results: Training Accuracy: 76.6% Validation Accuracy: 78%

image

image

Infrences

image

image

image

image

The above inference is a case where the model predicted the classes correctly. The focus has been on player postures and the initial contacts. In Figure 4, you can clearly see it takes into account both the players postures and initial point of contact. Figure 3, shows that the initial point of contact with the player as well the ball of the opposition player is taken into account for the decision making.

image

In Figure 5, the original image corresponds to a foul but is classified as a clean tackle, observe that the initial point of contact is not considered at all, some focus is on the postures but mainly on the green grass. This is pretty common in the images classified in the wrong classes. This issue can be resolved if more data is available for both classes and the quality of data improves.

Real-Time Inference Example can be seen in the article.

Future Work

The future work is improving the model by increasing the volume of the data as well as the variety of fouls. In this project, we have studied sliding tackles. Once a model with better accuracy is achieved, it may become the next advancement in football’s decision making.

The data can be used freely but if you do use it mention Aamir Ahmad Ansari in the citations or credits with link to this repository.

Owner
Aamir
Software Developer / AI and ML Expert
Aamir
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022