Official implementations of PSENet, PAN and PAN++.

Overview

News

  • (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23.
  • (2021/04/08) PSENet and PAN are included in MMOCR.

Introduction

This repository contains the official implementations of PSENet, PAN, PAN++, and FAST [coming soon].

Text Detection
Text Spotting

Installation

First, clone the repository locally:

git clone https://github.com/whai362/pan_pp.pytorch.git

Then, install PyTorch 1.1.0+, torchvision 0.3.0+, and other requirements:

conda install pytorch torchvision -c pytorch
pip install -r requirement.txt

Finally, compile codes of post-processing:

# build pse and pa algorithms
sh ./compile.sh

Dataset

Please refer to dataset/README.md for dataset preparation.

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py ${CONFIG_FILE}

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py config/pan/pan_r18_ic15.py

Testing

Evaluate the performance

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}
cd eval/
./eval_{DATASET}.sh

For example:

python test.py config/pan/pan_r18_ic15.py checkpoints/pan_r18_ic15/checkpoint.pth.tar
cd eval/
./eval_ic15.sh

Evaluate the speed

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --report_speed

For example:

python test.py config/pan/pan_r18_ic15.py checkpoints/pan_r18_ic15/checkpoint.pth.tar --report_speed

Citation

Please cite the related works in your publications if it helps your research:

PSENet

@inproceedings{wang2019shape,
  title={Shape Robust Text Detection with Progressive Scale Expansion Network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}

PAN

@inproceedings{wang2019efficient,
  title={Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network},
  author={Wang, Wenhai and Xie, Enze and Song, Xiaoge and Zang, Yuhang and Wang, Wenjia and Lu, Tong and Yu, Gang and Shen, Chunhua},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8440--8449},
  year={2019}
}

PAN++

@article{wang2021pan++,
  title={PAN++: Towards Efficient and Accurate End-to-End Spotting of Arbitrarily-Shaped Text},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Liu, Xuebo and Liang, Ding and Zhibo, Yang and Lu, Tong and Shen, Chunhua},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

FAST

@misc{chen2021fast,
  title={FAST: Searching for a Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation}, 
  author={Zhe Chen and Wenhai Wang and Enze Xie and ZhiBo Yang and Tong Lu and Ping Luo},
  year={2021},
  eprint={2111.02394},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

License

This project is developed and maintained by IMAGINE [email protected] Key Laboratory for Novel Software Technology, Nanjing University.

IMAGINE Lab

This project is released under the Apache 2.0 license.

Comments
  • Evaluation of the performance result

    Evaluation of the performance result

    Hello Author, First of all, I would like to appreciate your work and effort. I have tried your repo. The evaluation code gives me an error of the "The sample 199 not present in GT," but the label text is there. When I tried to see the result via visualizing it on the images, it seems good. Let me know if there is any solution from your side.

    opened by dikubab 9
  • _pickle.PicklingError: Can't pickle <class 'cPolygon.Error'>: import of module 'cPolygon' failed

    _pickle.PicklingError: Can't pickle : import of module 'cPolygon' failed

    more complete log as belows: Epoch: [1 | 600] /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/torch/nn/functional.py:2941: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead. warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.") /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/torch/nn/functional.py:3121: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. "See the documentation of nn.Upsample for details.".format(mode)) (1/374) LR: 0.001000 | Batch: 2.668s | Total: 0min | ETA: 17min | Loss: 1.619 | Loss(text/kernel/emb/rec): 0.680/0.193/0.746/0.000 | IoU(text/kernel): 0.324/0.335 | Acc rec: 0.000 Traceback (most recent call last): File "/data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/multiprocessing/queues.py", line 236, in _feed obj = _ForkingPickler.dumps(obj) File "/data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/multiprocessing/reduction.py", line 51, in dumps cls(buf, protocol).dump(obj) _pickle.PicklingError: Can't pickle <class 'cPolygon.Error'>: import of module 'cPolygon' failed

    the code runs normally when using the CTW1500 datasets. but encounter errors when using my own datasets.

    it seems fine in the first run (1/374), what is wrong ? I have no idea.

    opened by Zhang-O 5
  • 关于训练的问题

    关于训练的问题

    您好!我现在在自己的数据上进行训练,训练过程是这样的 image Epoch: [212 | 600] (1/198) LR: 0.000677 | Batch: 3.934s | Total: 0min | ETA: 13min | Loss: 0.752 | Loss(text/kernel/emb/rec): 0.493/0.199/0.059/0.000 | IoU(text/kernel): 0.055/0.553 | Acc rec: 0.000 (21/198) LR: 0.000677 | Batch: 1.089s | Total: 0min | ETA: 3min | Loss: 0.731 | Loss(text/kernel/emb/rec): 0.478/0.199/0.054/0.000 | IoU(text/kernel): 0.048/0.482 | Acc rec: 0.000 (41/198) LR: 0.000677 | Batch: 1.022s | Total: 1min | ETA: 3min | Loss: 0.732 | Loss(text/kernel/emb/rec): 0.478/0.198/0.056/0.000 | IoU(text/kernel): 0.049/0.476 | Acc rec: 0.000 这个Acc rec一直是0,我终止训练后,在测试数据上进行测试时,output输出的是空的,请问是怎么回事呢,感谢啦!

    opened by mayidu 3
  • 关于后处理的疑问

    关于后处理的疑问

    1. 后处理的代码中当kernel中两个连通域的面积比大于max_rate时,将这两个连通域的flag赋值为1,在扩充时,必须同时满足当前扩充的点所属的连通域的flag值为1且与kernal的similar vector距离大于3时才不扩充该点。请问设flag这步操作的作用是什么,直接判断与Kernel的similar vector的距离可以吗?
    2. 论文中扩充的点与kernel相似向量的欧式距离thresh值为6,代码中为3,请问实际应用中这个值跟什么有关系,是数据集的某些特点吗?
    opened by jewelc92 3
  • Regarding pa.pyx

    Regarding pa.pyx

    Hi,

    I try to run your code and figure out that in your last line in pa.pyx

    return _pa(kernels[:-1], emb, label, cc, kernel_num, label_num, min_area)

    Looks like this should be

    return _pa(kernels, emb, label, cc, kernel_num, label_num, min_area)

    So that we can scan over all kernels (you skip the last kernel) and there is no crash in this function. Am I correct?

    Thanks.

    opened by liuch37 3
  • AttributeError: 'Namespace' object has no attribute 'resume'

    AttributeError: 'Namespace' object has no attribute 'resume'

    PAN++ic15,An error appears when trying to test the model:

    reading type: pil. Traceback (most recent call last): File "test.py", line 155, in main(args) File "test.py", line 138, in main print("No checkpoint found at '{}'".format(args.resume)) AttributeError: 'Namespace' object has no attribute 'resume'

    opened by lrjj 2
  • 训练Total Text时遇到的问题

    训练Total Text时遇到的问题

    运行 python train.py config/pan/pan_r18_tt.py 后,出现如下情况: p1 Traceback (most recent call last): File "/home/dell2/anaconda3/envs/pannet/lib/python3.6/multiprocessing/queues.py", line 234, in _feed obj = _ForkingPickler.dumps(obj) File "/home/dell2/anaconda3/envs/pannet/lib/python3.6/multiprocessing/reduction.py", line 51, in dumps cls(buf, protocol).dump(obj) _pickle.PicklingError: Can't pickle <class 'cPolygon.Error'>: import of module 'cPolygon' failed 似乎是迭代过程中出现的问题且只出现在训练TT数据集的时候 请问出现这种情况该怎样解决呢?谢谢您

    opened by mashumli 2
  • 执行test.py提示TypeError: 'module' object is not callable

    执行test.py提示TypeError: 'module' object is not callable

    将模型路径和config文件路径配置好了之后,执行python test.py,提示如下: Traceback (most recent call last): File "test.py", line 117, in main(args) File "test.py", line 107, in main test(test_loader, model, cfg) File "test.py", line 56, in test outputs = model(**data) File "/home/ethony/anaconda3/envs/ocr/lib/python3.6/site-packages/torch/nn/modules/module.py", line 547, in call result = self.forward(*input, **kwargs) File "/media/ethony/C14D581BDA18EBFA/lyg_datas_and_code/OCR_work/pan_pp.pytorch-master/models/pan.py", line 104, in forward det_res = self.det_head.get_results(det_out, img_metas, cfg) File "/media/ethony/C14D581BDA18EBFA/lyg_datas_and_code/OCR_work/pan_pp.pytorch-master/models/head/pa_head.py", line 65, in get_results label = pa(kernels, emb) TypeError: 'module' object is not callable 看提示应该是model/post_processing下的pa没有正确导入,导入为模块了,这应该怎么解决呢

    opened by ethanlighter 2
  • problems in train.py

    problems in train.py

    Hi. When I run 'python train.py config/pan/pan_r18_ic15.py' , the errors are as followings: Do you know how to solve the problem? Thank you very much. Traceback (most recent call last): File "train.py", line 234, in main(args) File "train.py", line 216, in main train(train_loader, model, optimizer, epoch, start_iter, cfg) File "train.py", line 41, in train for iter, data in enumerate(train_loader): File "D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 435, in next data = self._next_data() File "D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 1085, in _next_data return self._process_data(data) File "D:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 1111, in _process_data data.reraise() File "D:\Anaconda3\lib\site-packages\torch_utils.py", line 428, in reraise raise self.exc_type(msg) TypeError: function takes exactly 5 arguments (1 given)

    opened by YUDASHUAI916 2
  • not sure about run compile.sh

    not sure about run compile.sh

    (zyl_torch16) [email protected]:/data/zhangyl/pan_pp.pytorch-master$ sh ./compile.sh Compiling pa.pyx because it depends on /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/init.pxd. [1/1] Cythonizing pa.pyx /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/Cython/Compiler/Main.py:369: FutureWarning: Cython directive 'language_level' not set, using 2 for now (Py2). This will change in a later release! File: /data/zhangyl/pan_pp.pytorch-master/models/post_processing/pa/pa.pyx tree = Parsing.p_module(s, pxd, full_module_name) running build_ext building 'pa' extension creating build creating build/temp.linux-x86_64-3.7 gcc -pthread -B /data/tools/anaconda3/envs/zyl_torch16/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include -I/data/tools/anaconda3/envs/zyl_torch16/include/python3.7m -c pa.cpp -o build/temp.linux-x86_64-3.7/pa.o -O3 cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ In file included from /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include/numpy/ndarraytypes.h:1822:0, from /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include/numpy/ndarrayobject.h:12, from /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include/numpy/arrayobject.h:4, from pa.cpp:647: /data/tools/anaconda3/envs/zyl_torch16/lib/python3.7/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp] #warning "Using deprecated NumPy API, disable it with "
    ^~~~~~~ g++ -pthread -shared -B /data/tools/anaconda3/envs/zyl_torch16/compiler_compat -L/data/tools/anaconda3/envs/zyl_torch16/lib -Wl,-rpath=/data/tools/anaconda3/envs/zyl_torch16/lib -Wl,--no-as-needed -Wl,--sysroot=/ build/temp.linux-x86_64-3.7/pa.o -o /data/zhangyl/pan_pp.pytorch-master/models/post_processing/pa/pa.cpython-37m-x86_64-linux-gnu.so (zyl_torch16) [email protected]:/data/zhangyl/pan_pp.pytorch-master$

    this is the compile history, I am not sure whether is successully build or not.

    opened by Zhang-O 2
  • morphology operations from kornia

    morphology operations from kornia

    Hi,

    Your FAST paper is really amazing! While you already have an implementation of erosion/dilation, let me offer using our set of morphology, implemented in pyre pytorch: https://kornia.readthedocs.io/en/latest/morphology.html

    https://kornia-tutorials.readthedocs.io/en/master/morphology_101.html

    Best, Dmytro.

    opened by ducha-aiki 1
  • The sample 199 not present in GT

    The sample 199 not present in GT

    Hello Author, First of all, I would like to appreciate your work and effort. I have tried your repo. The evaluation code gives me an error of the "The sample 199 not present in GT," but the label text is there. When I tried to see the result via visualizing it on the images, it seems good. Let me know if there is any solution from your side.

    opened by zeng-cy 1
  • How  to predict a new image using the training weight?it doesn't work below.

    How to predict a new image using the training weight?it doesn't work below.

    How to predict a new image using the training weight?it doesn't work below.

    python test.py config/pan/pan_r18_ic15.py checkpoints/pan_r18_ic15/checkpoint.pth.tar cd eval/ ./eval_ic15.sh

    please inform me with [email protected] or wechat SanQian-2012,thanks you so much.

    Originally posted by @Devin521314 in https://github.com/whai362/pan_pp.pytorch/issues/91#issuecomment-1233810612

    opened by Devin521314 0
  • Why rec encoder use EOS? not SOS

    Why rec encoder use EOS? not SOS

    hi: I find there is no 'SOS' in code, I understand SOS should be embedding at the beginning. Please tell me ,thanks! ---------------code----------------------------------------------- class Encoder(nn.Module): def init(self, hidden_dim, voc, char2id, id2char): super(Encoder, self).init() self.hidden_dim = hidden_dim self.vocab_size = len(voc) self.START_TOKEN = char2id['EOS'] self.emb = nn.Embedding(self.vocab_size, self.hidden_dim) self.att = MultiHeadAttentionLayer(self.hidden_dim, 8)

    def forward(self, x):
        batch_size, feature_dim, H, W = x.size()
        x_flatten = x.view(batch_size, feature_dim, H * W).permute(0, 2, 1)
        st = x.new_full((batch_size,), self.START_TOKEN, dtype=torch.long)
        emb_st = self.emb(st)
        holistic_feature, _ = self.att(emb_st, x_flatten, x_flatten)
        return 
    
    opened by Patickk 0
Releases(v1)
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022