The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

Overview

ISC-Track1-Submission

The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

Required dependencies

To begin with, you should install the following packages with the specified versions in Python, Anaconda. Other versions may work but please do NOT try. For instance, cuda 11.0 has some bugs which bring very bad results. The hardware chosen is Nvidia Tesla V100 and Intel CPU. Other hardware, such as A100, may work but please do NOT try. The stability is not guaranteed, for instance, the Ampere architecture is not suitable and some instability is observed. Please do NOT use AMD CPU, such as EPYC, we observe some instability on DGX server.

  • python 3.7.10
  • pytorch 1.7.1 with cuda 10.1
  • faiss-gpu 1.7.1 with cuda 10.1
  • h5py 3.4.0
  • pandas 1.3.3
  • sklearn 1.0
  • skimage 0.18.3
  • PIL 8.3.2
  • cv2 4.5.3.56
  • numpy 1.16.0
  • torchvision 0.8.2 with cuda 10.1
  • augly 0.1.4
  • selectivesearch 0.4
  • face-recognition 1.3.0 (with dlib of gpu-version)
  • tqdm 4.62.3
  • requests 2.26.0
  • seaborn 0.11.2
  • mkl 2.4.0
  • loguru 0.5.3

Note: Some unimportant packages may be missing, please install them using pip directly when an error occurs.

Pre-trained models

We use three pre-trained models. They are all pre-trained on ImageNet unsupervisedly. To be convenient, we first directly give the pre-trained models as follows, then also the training codes are given.

The first backbone: ResNet-50; The second backbone: ResNet-152; The third backbone: ResNet-50-IBN.

For ResNet-50, we do not pre-train it by ourselves. It is directly downloaded from here. It is supplied by Facebook Research, and the project is Barlow Twins. You should rename it to resnet50_bar.pth.

For ResNet-152 and ResNet-50-IBN, we use the official codes of Momentum2-teacher. We only change the backbone to ResNet-152 and ResNet-50-IBN. It takes about 2 weeks to pre-train the ResNet-152, and 1 week to pre-train the ResNet-50-IBN on 8 V100 GPUs. To be convenient, we supply the whole pre-training codes in the Pretrain folder. The related readme file is also given in that folder.

It should be noted that pre-training processing plays a very important role in our algorithm. Therefore, if you want to reproduce the pre-trained results, please do NOT change the number of GPUs, the batch size, and other related hyper-parameters.

Training

For training, we generate 11 datasets. For each dataset, 3 models with different backbones are trained. Each training takes about/less than 1 day on 4 V100 GPUs (bigger backbone takes longer and smaller backbone takes shorter). The whole training codes, including how to generate training datasets and the link to the generated datasets, are given in the Training folder. For more details, please refer to the readme file in that folder.

Test

To test the performance of the trained model, we perform multi-scale, multi-model, and multi-part testing and ensemble all the scores to get the final score. To be efficient, 33 V100 GPUs are suggested to use. The time for extracting all query images' features using 33 V100 GPUs is about 3 hours. Also extracting and storing training and reference images' features take a lot of time. Please be patient and prepare enough storage to reproduce the testing process. We give all the information to generate our final results in the Test folder. Please reproduce the results according to the readme file in that folder.

Owner
Wenhao Wang
I am a student from Beihang University. My research interests include person re-identification, unsupervised domain adaptation, and domain generalization.
Wenhao Wang
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023