Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Overview

Meta-SparseINR

Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, Namhoon Lee, and Jinwoo Shin.

TL;DR: We develop a scalable method to learn sparse neural representations for a large set of signals.

Illustrations of (a) an implicit neural representation, (b) the standard pruning algorithm that prunes and retrains the model for each signal considered, and (c) the proposed Meta-SparseINR procedure to find a sparse initial INR, which can be trained further to fit each signal.

1. Requirements

conda create -n inrprune python=3.7
conda activate inrprune

conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia

pip install torchmeta
pip install imageio einops tensorboardX

Datasets

  • Download Imagenette and SDF file from the following page:
  • One should locate the dataset into /data folder

2. Training

Training option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}

Meta-SparseINR (ours)

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (magnitude pruning)
python main.py --exp metaprune --epoch 30000 --pruner MP --amount 0.2 --data <DATASET>

Random Pruning

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (random pruning)
python main.py --exp metaprune --epoch 30000 --pruner RP --amount 0.2 --data <DATASET>

Dense-Narrow

# Train dense model with a given width

# Shell script style
widthlist="230 206 184 164 148 132 118 106 94 84 76 68 60 54 48 44 38 34 32 28"
for width in $widthlist
do
    python main.py --exp meta_baseline --epoch 150000 --data <DATASET> --width $width --id width_$width
done

3. Evaluation

Evaluation option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}
  • <OPT_TYPE>: {default,two_step_sgd}, default denotes adam optimizer with 100 steps.

We assume all checkpoints are trained.

Meta-SparseINR (ours)

python eval.py --exp prune --pruner MP --data <DATASET> --opt_type <OPT_TYPE>

Baselines

# Random pruning
python eval.py --exp prune --pruner RP --data <DATASET> --opt_type <OPT_TYPE>

# Dense-Narrow
python eval.py --exp dense_narrow --data <DATASET> --opt_type <OPT_TYPE>

# MAML + One-Shot
python eval.py --exp one_shot --data <DATASET> --opt_type default

# MAML + IMP
python eval.py --exp imp --data <DATASET> --opt_type default

# Scratch
python eval.py --exp scratch --data <DATASET> --opt_type <OPT_TYPE>

4. Experimental Results

Citation

@inproceedings{lee2021meta,
  title={Meta-learning Sparse Implicit Neural Representations},
  author={Jaeho Lee and Jihoon Tack and Namhoon Lee and Jinwoo Shin},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

Reference

Owner
Jaeho Lee
Postdoctoral researcher at KAIST.
Jaeho Lee
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Rohit Ingole 2 Mar 24, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022